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Despite many articles reporting the problems of dichotomizing continuous measures, re-
searchers still commonly use this practice. The authors’ purpose in this article was to
understand the reasons that people still dichotomize and to determine whether any of these
reasons are valid. They contacted 66 researchers who had published articles using dichoto-
mized variables and obtained their justifications for dichotomization. They also contacted 53
authors of articles published in Psychological Methods and asked them to identify any
situations in which they believed dichotomized indicators could perform better. Justifications
provided by these two groups fell into three broad categories, which the authors explored both
logically and with Monte Carlo simulations. Continuous indicators were superior in the
majority of circumstances and never performed substantially worse than the dichotomized
indicators, but the simulations did reveal specific situations in which dichotomized indicators
performed as well as or better than the original continuous indictors. The authors also
considered several justifications for dichotomization that did not lend themselves to simula-
tion, but in each case they found compelling arguments to address these situations using
techniques other than dichotomization.
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There are two kinds of people in the world, those who believe
there are two kinds of people in the world and those who
don’t.—Robert Benchley, Benchley’s Law of Distinction

Dichotomization is a statistical procedure by which a
variable that originally was continuous is transformed into a
categorical variable based on where people fall relative to
a cutoff point (Cohen, 1983). For example, a continuous
measurement of test performance can be used to create

“pass” and “fail” groups on the basis of whether scores are
greater than or less than a relevant cutoff score, such as
65%. The practice of dichotomization has been attacked by
methodologists on a number of different grounds (e.g.,
Cohen, 1983; Fitzsimons, 2008; Humphreys, 1978; Hum-
phreys & Fleishman, 1974; MacCallum, Zhang, Preacher, &
Rucker, 2002; Maxwell & Delaney, 1993; Maxwell,
Delaney, & Dill, 1984). These methodologists have argued
that it leads to a loss in analytic power and, in some
cases, can create falsely significant results. These warn-
ings, however, have not stopped researchers from dichot-
omizing their continuous variables prior to analysis.
MacCallum et al. (2002) found that 11.5% of the articles
in two top-tier journals (Journal of Consulting and Clin-
ical Psychology and Journal of Personality and Social
Psychology) contained analyses in which at least one
continuous variable was artificially dichotomized. If di-
chotomization is known to be problematic, why is it still
used in research? The disconnect between statistical rec-
ommendations and actual practice suggests that method-
ologists have not fully addressed the questions that re-
searchers have about dichotomization. Our goals in the
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current article were therefore to determine why research-
ers still choose to dichotomize, to thoroughly examine
the validity of these reasons, and to provide recommen-
dations for future analytic practice.

We cast our discussion at two different audiences. First,
we wanted to provide the general research community with
specific information regarding the circumstances under
which the dichotomization of continuous variables may be
justified. We hoped to resolve any questions in researchers’
minds regarding whether a particular reason for dichotomi-
zation is valid or not so that they can perform the most
powerful and appropriate statistical tests. Second, we hoped
to provide a resource for statisticians and methodologists
who collaborate or consult with investigators who might
wish to dichotomize. Although many members of this sec-
ond audience are aware of the problems with dichotomiza-
tion and avoid it in their own work, our evaluation of the
common justifications for dichotomization will allow them
to make stronger, empirically based arguments against the
practice in circumstances in which it leads to less valid
results.

A Brief History of Dichotomization

Although the practice of dichotomization is much criti-
cized by today’s statisticians, it derives from a previously
accepted tradition of categorizing responses to save labor in
statistical calculations (Cohen, 1983). When it was still
common to perform statistical analyses by hand, some re-
searchers would choose to aggregate groups of observations
to reduce the number of values that had to be entered into
their computations. It was well understood, however, that
this aggregation would reduce the variability in the mea-
sures and correspondingly weaken the estimated size of the
relations between variables. Peters and Van Voorhis (1940,
p. 398) showed that two-group splits will reduce correla-
tions by 20.2%, three-group splits will reduce correlations
by 14.1%, and four-group splits will reduce correlations by
8.5%, assuming there are equal numbers in each group. This
is actually the best that categorization can do—if research-
ers choose to use groups of unequal sizes, then the observed
relations will be reduced even further (Cohen, 1983). As a
practical example, if the original correlation between two
continuous variables was .500, we would expect to observe
a correlation of .399 if one of the variables was dichoto-
mized and a correlation of .318 if both of the variables were
dichotomized, assuming that the dichotomized group sizes
were equal. Peters and Van Voorhis (1940) specifically
suggested that researchers should always correct for this
reduction when they artificially categorize data into six or
fewer groups.

Methodologists started criticizing the practice of catego-
rizing continuous data when researchers began to use it for
reasons other than ease of computation, and when authors

failed to consider the effects of categorization on their
results. Humphreys and Fleishman (1974) and Humphreys
(1978) criticized the common use of dichotomization to
allow researchers to analyze the influence of continuously
measured personality variables using analysis of variance
(ANOVA). These authors suggested that the use of
ANOVA in this circumstance misrepresents the relations
among variables found in the real world, gives the illusion
of experimental control to designs that lack it, and reduces
the size of the observed relations. They proposed that con-
tinuously measured variables should instead be left in their
original form and be investigated with correlations and
regression analysis.

The issues surrounding dichotomizing naturally continu-
ous variables were summarized and brought to the psycho-
logical literature by Cohen (1983). He discussed several of
the reasons that researchers typically give for dichotomiza-
tion (e.g., that it makes analyses easier to conduct and
interpret, that it allows the use of statistical techniques such
as ANOVA and log-linear modeling, and that it refines
crude measurements). His conclusion was that these repre-
sented either misunderstandings of statistical principles
(such as in the case of refining crude measurements, because
dichotomization actually adds errors of discreteness to ex-
isting measurement error) or else were not worth the costs in
terms of statistical power and accuracy of the estimated
relations.

MacCallum et al. (2002) provided a thorough review of
the problems of dichotomization and provided a practical
explanation as to why it reduces the observed relations
among variables. Compared with the original continuous
measure, a dichotomized variable is less precise because it
does not allow the researcher to discriminate between dif-
ferently scoring members in the same group. For example,
someone who is just barely above the cutoff value is treated
the same as someone who is near the maximum value on the
scale. All of the information that distinguishes an observa-
tion from other members of its group is necessarily lost—
essentially, everyone within the group is treated as having a
value equal to the group mean. Losing this information
makes it more difficult to use the dichotomized variable to
predict participants’ characteristics on other measures. Tests
based on dichotomized variables will therefore have less
power than those performed with the original continuous
measures. Effect size estimates based on dichotomized
scores will also typically be smaller than those based on the
original continuous measures.

In addition to reducing the ability to detect relations,
Maxwell and Delaney (1993) noted that the use of dichot-
omized measures can lead to spuriously significant results
when two artificially dichotomized independent variables
(IVs) are used to predict a dependent variable (DV) in a
multifactor ANOVA. Such results can occur when the con-
structs underlying the two dichotomized IVs are correlated,
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and only one of them is actually related to the DV. We have
already discussed how it would be more difficult to relate a
dichotomized variable to other measures because of the loss
of information. One implication of the reduced predictive
ability of the dichotomized measure is that it cannot explain
as much variability in the DV as the original continuous
measure. This means that there will be some variability in
the DV related to the theoretical construct underlying the
dichotomized measure that the dichotomized measure itself
cannot explain. Now consider a third variable that has no
independent relation with the DV but is related to the
construct underlying the dichotomized measure. If we add
this third variable to our model, this variable may be given
“credit” for explaining this leftover variability. More gen-
erally, Maxwell and Delaney (1993) have mathematically
shown that this can lead to inflated Type I error rates
whenever there is a correlation between two dichotomized
IVs. They also showed that artificially dichotomizing IVs
will lead to an inflation of the Type I error rates for the test
of an interaction between those variables if the IVs are
correlated and one of the IVs has a nonlinear relation with
the DV. Vargha, Rudas, Delaney, and Maxwell (1996)
further showed that the spuriously significant results dis-
cussed by Maxwell and Delaney will also occur when only
one of the two IVs is dichotomized. Taken together, these
findings indicate that dichotomizing variables can not only
reduce the power of statistical tests but can also lead to
incorrectly significant results.

Why Do Researchers Dichotomize Their Data?

Most researchers are aware of the problems that may
result from dichotomization, and yet dichotomized variables
can still be regularly found in current research (Fitzsimons,
2008). In their discussion of the prevalence of dichotomi-
zation, MacCallum et al. (2002) identified 105 articles pub-
lished in either the Journal of Consulting and Clinical
Psychology or the Journal of Personality and Social Psy-
chology over a 3-year period that included analyses with at
least one artificially dichotomized continuous variable. To
obtain a better understanding of why researchers use dichot-
omization, we e-mailed the contact authors for these articles
and asked them to explain why they had dichotomized
variables in their studies and to identify any circumstances
in which they thought dichotomization might be appropri-
ate. Most of the research examining the performance of
dichotomized variables has focused on idealized, tractable
variables. We thought that researchers with practical expe-
rience in dichotomizing variables might be aware of specific
circumstances that have not been investigated in formal
analyses in which dichotomization is preferable. Sixty-six
(63%) of these authors responded to our query, providing us
with a survey of modern researchers’ beliefs about dichot-
omization.

We also sought the opinions of researchers with strong
methodological and statistical backgrounds, believing that
these individuals might be aware of additional situations in
which dichotomized variables might be optimal. To accom-
plish this, we e-mailed the contact authors of all articles
published in Psychological Methods between 2003 and
2008. We asked these individuals whether they had used
dichotomization in their own research and whether they
could identify situations in which they thought a dichoto-
mized indicator could outperform a continuous indicator
(i.e., be more powerful or accurate). Fifty-three (40%) of
these authors responded to our query.

Table 1 presents a summary of the possible reasons to use
dichotomization that were provided by the authors responding
to our e-mails. We were able to categorize these reasons into
three major groups. The first suggested that there were partic-
ular types of variables or particular types of relations between
variables that might be better examined with dichotomized
indicators. The second suggested that conducting analyses with
dichotomized indicators is easier than conducting analysis with
continuous indicators. The third suggested that under certain
circumstances, the analyses conducted with dichotomized in-
dicators may better match the theoretical purpose of the re-
search.

In the following sections, we examine each of these
reasons individually and explain why the authors felt that it
might offer a justification for dichotomization. We then
provide a critical examination of the reason to determine
whether it is consistent with current statistical knowledge.
We include Monte Carlo simulations to empirically inves-
tigate reasons related to the distributions of the variables.
The simulations share several common properties, so we
present them together at the end of the section on distribu-
tions to make understanding their procedures and results
simpler.

In our discussions, we will use the term latent variable to
refer to the theoretical true score on a construct, which in
practice cannot be measured. The term observed variable re-
fers to the score that is obtained on a continuous measure
designed to capture the latent variable. An indicator variable is
an index derived from the observed variable that is actually
used in analysis. We most commonly will be considering either
continuous indicators, which would be exactly equal to the
observed variable, or dichotomized indicators, which would be
categorical variables created by dichotomizing the observed
variable (such as by performing a median split). As an exam-
ple, a researcher may be interested in the latent variable of
intelligence, which is in practice estimated using the observed
measure of an IQ test. When analyzing relations with intelli-
gence, the researcher might use the IQ score in its raw form as
a continuous indicator or choose to perform a median split to
create a dichotomized indicator representing “high IQ” and
“low IQ” groups.
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Reasons Related to the Distributions
of the Variables

The latent variable has an irregular distribution. While
methodologists have shown through mathematical proofs
and Monte Carlo simulations that dichotomization leads to
weaker and potentially misleading statistical tests, almost
all of these were based on the assumption that the variable
being dichotomized has a naturally continuous and typically
normal distribution (e.g., Cohen, 1983; MacCallum et al.,
2002; Maxwell & Delaney, 1993). This leaves the unan-
swered question of what happens when researchers dichot-
omize variables that have irregular distributions. It is pos-
sible that there are specific types of distributions in which
dichotomized indicators provide better representations of
the underlying constructs than the observed continu-
ous indicators.

Researchers most commonly reported that dichotomiza-
tion might be appropriate when the underlying construct
being measured is truly categorical. MacCallum et al.
(2002) specifically stated that one of the circumstances
under which it might be appropriate to use dichotomization
is when the researcher believes that the underlying construct
has a categorical structure. The rationale is that a dichoto-
mization of the observed measure more naturally reflects the
latent construct than the observed continuous measure.

Without a doubt, the distribution of the dichotomized indi-
cator appears to be more like that of the latent variable than
the continuous indicator. However, this does not guarantee
that the observations are assigned to the correct groups and
makes the cost of mismatches more extreme since there is
no middle ground. A number of researchers also mentioned
the possibility that a dichotomized indicator might perform
better when the underlying latent variable is highly skewed.
It is possible to conceptualize a skewed distribution as
consisting of two parts: the observations surrounding the
distribution’s mode and the observations in the distribu-
tion’s tail. Sometimes researchers believe that these parts
represent theoretically different cases and feel that a dichot-
omization of the variable would represent the variable better
than the original continuous score.

The observed variable has poor reliability. The reliabil-
ity of a variable is a quantitative estimate of how much
random error is incorporated in its measurement, such that
measures with lower reliabilities have a greater proportion
of random error (DeVellis, 2003). The authors that we
surveyed believed that low reliability could provide a jus-
tification for dichotomization because continuous variables
make finer distinctions between individuals than categorical
variables and so should be more affected by random error in
the measurements. They suggested that dichotomization

Table 1
Reasons for Dichotomization Offered by Authors

Reasons cited for dichotomization
Practitioners of dichotomization

mentioning reason (N � 66)
Psychological Methods authors

mentioning reason (N � 53)

Reasons related to the distributions of the variables
The latent variable has an irregular distribution (with the

irregularity unspecified). 0 4
The latent variable being measured is truly categorical. 10 14
The latent variable is skewed. 1 5

The observed variable has poor reliability. 8 6
The observed variable has outliers. 2 1
The study uses extreme group analysis. 5 4
The relation between the latent and outcome variables is

not linear. 7 13
Reasons related to the ease of analysis

Results from analyses with dichotomized variables
typically lead to the same conclusions as those with
continuous variables. 5 1

It is easier to present the results from analyses with
dichotomized IVs. 10 4

It is easier to analyze interactions with dichotomized IVs. 6 2
Reasons related to the prior use of the variable

The field has identified theoretically meaningful cut
points on the variable being dichotomized. 13 16

Researchers have typically dichotomized the variable in
the past. 0 4

Authors stating that dichotomization is never justified 1 10

Note. IVs � independent variables.
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decreases variability in the responses (because scores are
collapsed within each group), reducing the random error and
making the results more accurate.

The observed variable has outliers. By definition, con-
tinuous measures can accommodate a wider range of re-
sponses than dichotomized measures, which also means that
the potential impact of unusual or erroneous responses is
greater for continuous measures. It has been well estab-
lished that such outliers can drastically change the charac-
teristics of an estimated regression line (Neter, Kutner,
Nachtsheim, & Wasserman, 1996). Even when they are
consistent with the regression line fitted through the other
data points, observations that have extreme values on the IV
dramatically affect tests of the regression models. After
dichotomization, however, all values on the same side of the
cutoff point have exactly the same influence on the statis-
tical results. Some researchers therefore argue that dichot-
omization should be used to prevent outliers from strongly
biasing statistical tests.

The study uses extreme group analysis. Sometimes re-
searchers will choose to analyze only those people who
have extreme values on a variable, either by not collecting
data from or by excluding the results from those who have
moderate scores on the variable. It has been known for some
time that it is possible to increase the power of tests relating
a continuous IV to a DV by recruiting people from the
extreme ends of the distribution on the IV (Feldt, 1961). By
excluding people from the middle of the distribution, a
procedure called extreme groups analysis, researchers in-
crease the variability within the sample, which in turn leads
to stronger observed relations between the IV and the DV.
This method has been shown to be an effective way of
selecting participants to maximize the likelihood of finding
a significant relation between an IV and a DV (Preacher,
Rucker, MacCallum, & Nicewander, 2005).

Once the high-scoring and low-scoring individuals have
been selected from the distribution, it is common practice to
dichotomize the values and create a categorical variable
with two groups. Extreme group analysis forces the distri-
bution of the variable to become more categorical, which
can be used as a justification for dichotomization. While
there is still variability within the upper and lower parts of
the distribution following this procedure, this is typically
much smaller than the variability between the groups, pos-
sibly making dichotomization more appropriate than a vari-
able containing the full range of values.

The relation between the latent and outcome variables is
not linear. The primary tool used to analyze the influence
of a continuous IV on a DV is linear regression, which
assumes that the effect of changes in the IV is constant
across the entire length of the scale. Sometimes, however,
researchers may expect that there are certain thresholds in
which even a small change in the value of the IV can have
a substantial influence on the DV, even while changes in the

IV have minimal influences on the DV at other points of the
scale. For example, a particular drug may have little effect
until the dosage reaches a certain threshold, at which point
it has a substantial effect that is constant for any dosage
greater than the threshold. This type of a relation may
possibly be best tested with a dichotomization of the IV that
separates participants who fall below the threshold from
those who fall above it.

Simulations Investigating the Effects of
Distributional Characteristics on Dichotomization

We performed simulations to examine how continuous
and dichotomized indicators perform as we changed char-
acteristics of the latent, observed, and outcome variables.
We conducted three primary sets of simulations. In the first
set, we investigated whether the continuous observed vari-
able or a dichotomization of this variable had stronger
relations with the underlying latent variable. In these sim-
ulations, we varied the latent variable continuity, latent
variable skewness, and observed variable reliability as well
as whether we performed the analysis using the full data set
or only extreme groups. In the second set of simulations, we
compared the performance of continuous and dichotomized
indicators when there were outliers in the distribution of the
observed variable. In the third set of simulations, we inves-
tigated the effects of changing the nature of the relation
between the latent and outcome variables (i.e., whether it
was linear or nonlinear).

In our simulations, we assumed that the measurement of
psychological characteristics could be assigned numerically
meaningful values. Michell (1997) discussed the implica-
tions of this assumption, noting that there are alternative
ways to interpret these measured characteristics. The valid-
ity of the conclusions drawn from our simulations therefore
depends on the validity of conceptualizing psychological
measurements as real numbers. Past researchers studying
dichotomization (e.g., MacCallum et al., 2002) have also
made this assumption, and there is a long tradition of
treating measured psychological characteristics in this man-
ner, going back to Fechner (1860). We therefore believe that
making this assumption is reasonably justified and that valid
information can be obtained by examining the results of our
simulations.

Generating latent, observed, and indicator variables.
We determined the latent, observed, and indicator variables
the same way for all of our simulations. We first generated
the distribution of the underlying latent variable. We wanted
to do this in a way that would let us vary both the latent
variable’s continuity (allowing it to be either truly contin-
uous or truly dichotomous) and skewness (allowing it to be
skewed or unskewed in the continuous case, or have groups
of equal or unequal size in the categorical case). Using a
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specialized version of the generalized logistic function
(Richards, 1959), we were able to randomly generate latent
distributions that independently varied on these two dimen-
sions. The value of the latent variable �i for a given obser-
vation was determined using the following formula:

�i �
1

1 � e�B�xi�M� ,

where xi is a random variable uniformly distributed between
0 and 1, B is the continuity parameter, and M is the skew-
ness parameter. B can take values between 1 and positive
infinity, such that higher values correspond to more cate-
gorical distributions. M can take values between 0 and 1,
such that a value of .5 corresponds to a symmetric distri-
bution, values close to 0 correspond to left-skewed distri-

butions, and values close to 1 correspond to right-skewed
distributions. In our simulations, we only considered right-
skewed distributions because there is no reason to expect
that the direction of skewness would influence its effects.

The way we used this formula to generate our latent distri-
bution was to first set B and M to the values specified by the
simulation we wanted to conduct. We then randomly generated
500 numbers between 0 and 1 to be the values of xi. Finally, we
computed the values of �i by substituting the values of xi into
the generalized logistic function. This gave us the 500 values
for our latent distribution, representing the true values on the
latent construct for all of the participants in a single simulated
study. Details of the mathematical model used to generate data
for our simulations are summarized in the Appendix.

Examples of different latent distributions obtained us-
ing different values of B and M are presented in Figure 1.

Figure 1. Latent distributions obtained using different values of continuity and skewness.
Prob. � probability.
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The effects of the continuity parameter B can be seen by
comparing the distributions across the different rows. At
the lowest level of B, the distribution gradually goes from
0 to 1, providing us with a continuous distribution. As B
increases, the observations become more and more clus-
tered at the endpoints, making the distribution more
categorical. The effects of the skewness parameter M can
be seen by comparing the distributions across the col-
umns. When this parameter is equal to .50, we have an
approximately flat distribution in the continuous case and
equally sized groups in the categorical case. As this
parameter gets closer to 1, we see that the continuous
distribution becomes more skewed and the categorical
distribution becomes more unbalanced. If we had chosen
to examine values for M that moved toward 0 instead of
those that moved toward 1, we would have obtained an
exact mirror image of the results displayed in this figure.

After the values of the latent variables were determined,
we computed the values of the continuous observed variable
mi, for each case using the equation

mi � � R

�1 � R2��i
� � ei ,

where �i
� is the standardized value of the latent variable for

case i, ei is a random value chosen from the standardized
normal distribution, and R is the reliability of the outcome
measure. The expected correlation between the observed
variable mi and the latent variable �i is exactly R (cf.
Appendix).

The final distribution of the observed variable was
therefore determined by three parameters: the continuity
parameter of the latent variable (B), the skewness param-
eter of the latent variable (M), and the reliability of the
observed variable (R). An important benefit of using this
method to determine our distributions is that we could
independently vary each of these dimensions in a contin-
uous fashion and observe their incremental influences on
continuous and dichotomized indicators. Examining gra-
dations of continuity, skewness, and reliability in this
way allows a fuller understanding of how changes in
these features influence the performance of continuous
and dichotomized indicators than we would have ob-
tained from simulations that examined them in an all-or-
none fashion.

Most of our simulations derived three different indicator
variables from the original observed variable.

1. A continuous indicator, which is simply equal to
the value of the observed variable.

2. A median split, which is a categorical variable in
which individuals in the bottom half of the distri-
bution of the observed variable are assigned the

value of 0, and the remainder are assigned the
value of 1.

3. A proportional split, which is a categorical vari-
able in which the split is determined by the value
of the skewness parameter. Specifically, individ-
uals who score in the lower M � 100% of the
distribution of the observed variable are as-
signed the value of 0, and the remainder are
assigned the value of 1. For example, if the
value of M is .7, then a proportional split would
put 70% of the observations in the lower group
and 30% of the observations in the upper group.
With a proportional split, more observations are
placed in the lower group when more observa-
tions are found in the lower part of the latent
distribution. If the latent variable is categorical,
the proportions assigned to each group of the
indicator duplicate the proportions found in the
latent distribution.

Examining these three indicators allowed us both to
compare the performances of continuous and dichoto-
mized indicators as well as to see how choosing a non-
proportional split affects the performance of dichoto-
mized indicators.

Simulation 1: Continuity, skewness, reliability, and ex-
treme group analysis. Our first set of simulations explored
how dichotomization influenced the ability of continuous
and dichotomized indicators to accurately represent the la-
tent variable under different conditions of continuity, skew-
ness, and reliability. For these simulations, we determined
the fit of each indicator by measuring its correlation with the
latent variable. We conducted a total of 2,400 simulations:
50 in each combination of four levels of continuity (B � 5,
10, 50, 500), three levels of skewness (M � .50, .70, .90),
and four levels of reliability (R � .40, .60, .80, .90). For
each simulation, we randomly determined values of the
latent variable for 500 subjects using the generalized logis-
tic function, combined the latent variable with random error
to obtain values of the observed distribution, and then used
the observed distribution to compute continuous, median
split, and proportional split indicators. We then correlated
the values of the latent variable with the values of the
various indicators. Each simulation was therefore concep-
tually parallel to collecting data from a single study. We
conducted multiple simulations within each condition to
ensure that our results represented overall trends. We did
not base our conclusions on statistical tests because with
2,400 studies, each including data from 500 participants,
every comparison was statistically significant. We instead
chose to present the data graphically and base our conclu-
sions on the broader trends that were apparent in the figures.
We used Fisher’s r-to-Z transformation when averaging the
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correlations across multiple simulations and then converted
these averages back to correlations using Fisher’s Z-to-r
transformation.1

Figure 2 presents the average correlations between the
different indicators and the underlying latent variable sep-
arately for each level of continuity. Higher correlations
denote that an indicator provided a better representation of
the underlying latent variable. This graph shows that the
continuous indicator performed equally well whether the
latent distribution was categorical or continuous and per-
formed substantially better than either dichotomized indica-
tor when the latent distribution was more continuous. As the
latent distribution became more categorical, the perfor-
mance of the proportional split indicator improved until it
was equal to that of the continuous indicator. The median
split, however, never performed as well as the continu-
ous indicator.

These results indicate that when the latent variable was
truly categorical, both continuous and proportional split
indicators performed equally well. However, as the distri-
bution of the latent variable became more continuous, the
performance of the dichotomized indicators worsened while
the performance of the continuous indicator stayed the
same. These results suggest that the continuous indicator is
more robust than the dichotomized indicators, in that it can
perform well with any type of distribution. The results also
suggest, however, that a proportional split can perform just
as well when the latent distribution is truly categorical.

Figure 3 displays the average correlation between each
type of indicator with the latent variable separately for
different combinations of continuity and skewness. The
graph on the left shows the performance of the continuous
and median split indicators when the latent distribution was
symmetric. This graph only has two lines because the pro-
portional split and the median split created exactly the same
groups when there is no skewness. In this case, we see an
advantage of the continuous indicator over the dichoto-
mized indicator, although this advantage decreases as the

latent distribution becomes more categorical. The graph on
the right illustrates the results when the latent distribution
was skewed. In this case, the continuous indicator per-
formed better than either of the dichotomized indicators
when the latent variable was continuous. As the latent
distribution became more categorical, the performance of
the proportional split consistently improved, exceeding the
performance of the continuous indicator when the distribu-
tion was entirely categorical with skewed data.

These results indicate that although dichotomized indicators
are viable alternatives to continuous indicators when the latent
distribution is categorical, this is only true when the relative
sizes of the dichotomized groups match those found in the
underlying distribution. When the latent variable is skewed, the
proportional split indicator shows improved performance as
the latent distribution becomes more categorical, but the me-
dian split does not. When the underlying distribution is fully or
moderately continuous, a dichotomized indicator cannot per-
form at the same level as the continuous indicator, even with
appropriately matched skewness.

Figure 4 displays the average correlation of each type of
indicator with the latent variable separately for different
combinations of continuity and reliability. When the latent
distribution was truly linear, the continuous indicator out-
performed the dichotomized indicator across all levels of
reliability. There was also an influence of reliability on the
performance of the indicators when the latent distribution
was categorical, such that the continuous indicator was

1 Schulze (2004) noted that using Fisher’s r-to-Z transformation
can increase the bias of correlation coefficients. However, we felt
that using this transformation was preferable when averaging
correlations over simulations because the bounded nature of the
correlation coefficient makes its distribution asymmetric, and the
bias in Zr is often considered to be small enough to be safely
ignored (Snedecor & Cochron, 1989).
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Figure 2. Average correlations with the latent variable by con-
tinuity and indicator type. The vertical axis represents the mean
correlation of the indicator with the original latent variable.
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Figure 3. Average correlations with the latent variable by con-
tinuity, skewness, and indicator type. The vertical axis represents
the mean correlation of the indicator with the original latent
variable.
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superior at low levels of reliability, but the proportional split
indicator was superior at high levels of reliability.

These results differ from the expectations of researchers
responding to our surveys in two ways. First, dichotomized
indicators do not perform better under conditions of poor
reliability. This is because dichotomization is necessarily
applied after the original continuous measurement has been
obtained, which means that the random error has already
influenced the results. Although dichotomization will re-
duce the amount of random error in the data, this reduction
is directly proportional to the reduction of systematic vari-
ability in the measurement. It is the relative proportion of
systematic to random variability that is important for test
statistics, so dichotomization does not provide a more pre-
cise measure of the underlying construct. It also comes with
a reduction in the total variability of the measure, which
inhibits the ability of the measure to relate to other variables
(Cohen, Cohen, West, & Aiken, 2003).

Second, when the latent variable is naturally categorical,
the proportional split indicator outperforms the continuous
indicator when the reliability is high. We believe that di-
chotomized indicators can outperform continuous indicators
when the latent distribution is categorical and the amount of
random error in the measurement is small relative to the
difference between the two group means. In this case,
deviations from the group mean provide no information
about the true values of the individual, and these deviations
are small enough that very few errors are made when
dichotomization is applied. It is also interesting to note that
the advantage of the proportional split indicator declines
when moving from a reliability of .8 to a reliability of .9. In
truly categorical distributions, the values of the continuous
and proportional split indicators become more similar as the
reliability increases, until they are exactly the same when
reliability � 1.0. At this point, both indicators exactly
replicate the underlying latent distribution. The difference
between the continuous and proportional split indicators
will decrease at the highest levels of reliability, which will

correspondingly decrease the advantage of the proportional
split indicator.

It is important to distinguish dichotomizing a measure
after it has been collected from limiting the number of
response options in a scale as it is administered. A number
of studies have shown that under certain circumstances,
scales with a smaller number of response options can pro-
duce more valid and reliable data than those with a larger
number of response options (e.g., Matell & Jacoby, 1971;
Miethe, 1985; Wikman & Warneryd, 1990). The fact that a
dichotomous response may at times be more appropriate
than a continuous response is not under debate. The ques-
tion being considered is whether dichotomization can help
refine a noisy measurement after it has already been col-
lected on a continuous scale. It is this latter possibility that
fails to receive support from our simulations.

We based our analyses of the effect of extreme group
analysis on these same simulations, comparing the results
found using all of the participants to those found when we
excluded participants who scored between the 25th and 75th
percentile of the latent distribution. However, we only con-
sidered simulations that had symmetric distributions (i.e.,
skewness parameter M � .50). Dropping observations from
a nonsymmetrical distribution affects many things other
than simply the extremity of the observations, which would
complicate the interpretation of the results. Excluding ob-
servations between the 25th and 75th percentile of a skewed
distribution creates dichotomized groups that differ in terms
of their (a) variance, (b) average difference from the overall
grand mean, and (c) distribution shape. Any differences
observed between the indicators could therefore be due to
these factors instead of the effect of extreme group analysis.
In symmetric distributions, the proportional split would be a
median split, so we only needed to consider continuous and
median split indicators. Restricting our attention to symmet-
ric distributions does limit the generalizability of our con-
clusions to these situations. However, the central limit the-
orem suggests that emergent characteristics that arise from
linear combinations of other variables tend to follow a
normal (and therefore symmetric) distribution (Hays, 1994,
pp. 243–244). Given the prevalence of such characteristics
in nature, we feel that our results still have broad applica-
bility.

Figure 5 displays the average correlations of the contin-
uous and median split indicators at each level of continuity
with and without extreme group analysis. The relations for
both types of indicators appeared to be stronger for extreme
group analysis than for analyses in which the full range of
data was used. Comparing the indicators, we can see that the
median split performed worse than the continuous indicator
when the full range of data was used but that the two
indicators represented the latent variable equally well when
extreme group analysis was used. Although Alf and Abra-
hams (1975) have shown empirically that analyses that treat
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Figure 4. Average correlations with the latent variable by reli-
ability, continuity, and indicator type. The vertical axis represents
the mean correlation of the indicator with the original latent
variable.
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the extremitized variable continuously are more powerful
than those that treat it dichotomously, this advantage did not
appear to be large enough to produce an observable effect in
our simulations. It appears that the reduction in variability
caused by extreme group analysis removed the benefit of a
continuous indicator, even when the latent distribution was
naturally continuous. These results suggest that continuous
and dichotomized indicators may be equally viable in the
performance of extreme group analysis.

Simulation 2: Outliers. The most appropriate way to
handle an outlier depends on why the observation is unusual
(Barnett & Lewis, 1994). Sometimes outlying observations
occur because of simple typographical errors. In these cases,
the appropriate action is to change the value of the outlier.
At times, an outlier could represent an observation that is
not a member of the population being studied (i.e., a 20-
year-old accidentally recruited in a study of older adults). In
these cases, the appropriate action is to remove the obser-
vation from the analysis. At other times, outliers may sim-
ply represent unusual individuals or events that still fit
within the population of interest. In these cases, the re-
searchers may keep the observation after transforming the
data, truncating the responses, or using procedures robust to
the presence of outliers. Rather than choosing to dichoto-
mize, in which all outliers are treated in exactly the same
way, researchers are better off intentionally looking for
outliers and then handling each in an individualized fashion.

All of this being said, we decided to conduct simulations to
determine the extent to which dichotomization reduces the
impact of outliers in a distribution. We compared dichotomi-
zation to both the original continuous distribution as well as the
continuous distribution after Winsorizing the data (Ruppert,
1988), in which observations below the 5th percentile of the
distribution are set equal to the value at the 5th percentile and
observations above the 95th percentile of the distribution are
set equal to the value at the 95th percentile.

We used Monte Carlo simulations to explore the effects
of outliers on continuous, dichotomized, and Winsorized

indicators. In each simulation, 95% of the observations were
considered to be typical observations, and 5% were consid-
ered to be outliers. The outliers were drawn from a distri-
bution that was the same as the distribution of the typical
observations in all characteristics except for the mean,
which was at least 2 standard deviations greater than the
mean of the typical observations. We conducted a total of
600 simulations, 50 in each combination of four levels of
continuity (B � 5, 10, 50, 500) with three levels of outlier
extremity (outlier M � 2, 4, or 6 standard deviations
greater). We limited our consideration to symmetric distri-
butions to make the effect of outliers more obvious. This
also removed the need to separately consider proportional
split indicators because the proportional split is a median
split in symmetric distributions.

Figure 6 displays the average correlations of the three
different indicators with the outcome variable separately by
continuity and outlier extremity. When the outliers were
only slightly deviant from the original distribution (with a
mean 2 standard deviations higher), the continuous indica-
tor performed equal to or better than the dichotomized
indicator across the range of continuity, while the Win-
sorized indicator performed better than both. When the
outliers were more extreme (with a mean 6 standard devi-
ations higher than the original distribution), there is a clear
advantage of the dichotomized indicator over the continu-
ous indicator at all levels of continuity. The dichotomized
indicator, however, performed notably worse than the Win-
sorized indicator. These results suggest that the fact that
dichotomization controls the effect of extreme outliers is not
a sufficient justification for dichotomization because Win-
sorizing the continuous indicator provides a consistently
better solution.

Simulation 3: Linearity. The simulations investigating
the effect of linearity were more complex because they
required the additional consideration of an outcome variable
and its relation to the latent variable. For each simulation,
we determined the distributions of the latent, observed, and
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Figure 6. Average correlations with the latent variable by con-
tinuity, outlier extremity, and indicator type. The vertical axis
represents the mean correlation of the indicator with the original
latent variable.
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indicator variables using the procedures described for Sim-
ulation 1. We then determined the value of an outcome
variable, which was a function of the latent variable and
random error. The nature of the relation between the latent
variable and the outcome variable was determined by
the equation

�i �
1

1 � e�L� �i

s�
�.5� ,

where L is the linearity parameter, �i is the latent variable,
and s� is the standard deviation of the latent variable. L can
take values from 1 to positive infinity, and it alters the
nature of the relation between the latent and outcome vari-
ables such that higher values correspond to greater devia-
tions from linearity. An illustration of the relations obtained
under different levels of L is presented in Figure 7. When
L � 1, the relation between the variables will be linear. At
moderate values of L (5 and 50 in our simulations), the
relation is sigmoidal (S-shaped). At high values of L (500 in
our simulations), the relation is a step function. Normally
distributed random error is added to the function to make
the relation probabilistic instead of deterministic, with vari-
ance appropriately chosen to fix the correlation between the
latent variable and the outcome variable to a constant value
(see the Appendix).

We conducted a total of 800 simulations: 50 in each
combination of four levels of continuity (B � 5, 10, 50, 500)
with four levels of linearity (L � 1, 5, 50, 500). For
simplification of the interpretation of the results, all of the
latent distributions were symmetric (M � .50), the observed
variable always had a high but not perfect reliability (R �
.70), and the relation between the latent and outcome vari-

ables was always strong (ry� � .70). For each simulation,
we randomly determined values of the latent variable for
500 subjects based on the appropriate level of continuity,
combined the latent variable with random error to obtain
values of the observed distribution, used the observed dis-
tribution to compute continuous and median split indicators,
and determined the value of the outcome variable with a
function based on the appropriate level of linearity. We then
correlated each of the indicator variables with the value of
the outcome variable. We used Fisher’s r-to-Z transforma-
tion when averaging the correlations across multiple simu-
lations and then converted these averages back to correla-
tions using Fisher’s Z-to-r transformation.

Although the linear model is a less-than-optimal way to
analyze the continuous variable, we decided to test the
predictive ability of the continuous indicator using such a
model in our simulations because it more closely paralleled
the way we analyzed a dichotomized indicator. A nonlinear
equation would more accurately represent the nature of the
relation between a continuous indicator and an outcome,
optimizing the continuous indicator’s performance. Our
logic here was that if the dichotomized indicator cannot
outperform the continuous indicator with the linear model,
then it will certainly not be able to outperform the contin-
uous indicator with a model that more accurately reflects the
nonlinear relation.

Figure 8 displays the average correlations of continuous
and median split indicators with the outcome variable sep-
arately by continuity and relation form. In each of the
graphs, the continuous indicator outperformed the median
split when the latent distribution was continuous, but this
difference disappeared as the distribution became more cat-
egorical. We did not see a substantial effect of linearity: The
performances of both indicators appeared to be consistent
across all levels of linearity, with the advantage of the
continuous indicator being consistently larger when the
latent variable was continuous.

Dichotomization does not produce an advantage when try-
ing to detect nonlinear relations because any nonlinear relation
that can be detected as a difference between dichotomized
group means can also be detected by linear regression. A
straight line can always be fit between any two points, so linear
regression can represent any relation that is identified as a
difference between the mean levels of a dichotomized variable.
When the mean of the lower group of a dichotomized IV is less
than the mean of the upper group, the slope between the
continuous IV and the DV will be greater than 0. When the
mean of the lower group of a dichotomized IV is greater than
the mean of the upper group, the slope between the continuous
IV and the DV will be less than 0. A categorical transformation
of a continuous variable must create three or more groups to
represent a relation that cannot be detected with simple linear
regression. Even in these cases, the proper polynomial trans-

Linear (L = 1) Shallow S-Curve (L = 5)

Steep S-Curve (L = 50) Step Function (L = 500)

Figure 7. Relations between latent variable and outcome at dif-
ferent levels of linearity.
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formation of the continuous variable could detect the same
relation with higher statistical power (Cohen et al., 2003).

All of this being said, neither linear regression nor a
dichotomized analysis is likely the best way to test the
relation between the IV and the DV if researchers suspect
that the relation is nonlinear. Statisticians have developed
specific analytic procedures to accurately model nonlinear
relations (Seber & Wild, 2003), which use the full informa-
tion available in the continuous measure to predict the DV.
These models will fit the actual relation with much greater
accuracy, resulting in stronger statistical tests. In addition,
most tests of nonlinear relations are able to accurately
model linear relations, so there is little harm in using these
procedures if the original assumption about a nonlinear
relation turns out to be incorrect.

Our consideration of nonlinearity focused on the assump-
tion that the slope of the relation between the IV and the DV
varied across the levels of the IV. At high levels of L, our
implementation of nonlinearity produced a step function,
which we believe to be the type of nonlinearity that is most
commonly thought of when researchers decide to dichoto-
mize their data. However, we acknowledge that this does
not capture the full range of possible nonlinear functions.
We therefore do not claim that our results provide an

exhaustive consideration of this matter. Our simulations do
show that there is no reason to use dichotomized indicators
when researchers believe that a sigmoidal or step function
describes the relation of the IV to the DV.

Reasons Related to the Ease of Analysis

Results from analyses with dichotomized variables typi-
cally lead to the same conclusions as those with continuous
variables. Even though this article focuses on the differ-
ences between the results found with continuous variables and
those found with dichotomized variables, it is important to
remember that both methods are aimed at testing the same
hypotheses. The analysis of continuous variables typically uses
regression, and the analysis of dichotomized variables typically
uses ANOVA but in both cases, the goal is to determine
whether there is a relation between the IV and the DV. In
practice, the conclusions drawn from use of the two methods
will usually be identical. Some researchers therefore have
suggested that it ultimately does not matter which of the two
methods is used. These researchers further suggested that since
it does not matter which of the two methods is used, variables
should be dichotomized and analyzed using ANOVA if this
procedure is more familiar to the researcher than regression.
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Figure 8. Average correlations with the outcome variable by continuity, linearity, and indicator
type. The vertical axis represents the mean correlation of the indicator with the outcome variable.
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While it is true that the results from continuous and
dichotomized variables typically converge, it has been
shown that except in the situations we identified earlier in
this article, dichotomization leads to systematically smaller
relations between the IV and the DV. Although the primary
emphasis in the reporting of studies is still on hypothesis
testing, there is a clear movement toward more reliance on
estimates of effect size (American Psychological Associa-
tion, 2001). Effect sizes can be reduced through the practice
of dichotomization even when the conclusions being drawn
from the hypothesis tests are the same. Modern researchers
often not only consider the statistical significance of an
effect but also judge the importance of a phenomenon on the
basis of the magnitude of its effect size. Effect sizes are
fundamentally important to power analyses (Cohen, 1988),
and researchers who base their sample size calculations on
a study in which the variables were dichotomized may end
up collecting more data than would actually be required to
test their hypotheses. Furthermore, dichotomization can bias
meta-analytic reviews of the literature by underestimating
the magnitude of effect sizes and by introducing artifactual
variation (based on whether variables were dichotomized)
which could be inaccurately attributed to moderator vari-
ables (Hunter & Schmidt, 1990). Given that analyses in
which continuous measures are used typically provide more
accurate estimates of the relations between underlying con-
structs than those using dichotomized measures, researchers
should present the former unless they have specific evidence
that they are in one of the situations in which dichotomized
indicators perform equivalently to continuous indicators.

Using dichotomized IVs makes analysis of interactions
easier. Although testing main effects is just as easy
whether one uses regression or ANOVA, it is somewhat
more difficult to test and explain interaction effects in
regression. Part of this difficulty stems from the fact that
many researchers are not familiar with the methods for
testing interactions in regression. Whereas the examination
of interaction effects was fundamentally a part of ANOVA
from its beginnings (Fisher, 1925), methods for testing
interaction effects in regression did not develop until much
later (Cohen, 1968). Even after these procedures were de-
veloped, a long time passed before a comprehensive treat-
ment of testing interaction effects in regression was avail-
able to researchers (Aiken & West, 1991). As a result, most
researchers have been formally trained in how to test for
interactions among categorical IVs, but fewer have been
trained in how to test for interactions among continuous
IVs. A second source of difficulty in testing interactions
involving continuous IVs is a general lack of support from
statistical software. Whereas most programs (such as SPSS)
automatically test for interactions among categorical IVs,
interactions involving continuous IVs commonly must be
set up by hand through creation of multiplicative interaction
terms. Not only does this make these models less accessible

to researchers, it also increases the opportunity for human
error to influence the results.

Although the procedures to test interactions involving
continuous IVs are less familiar to researchers, they have
been fully developed. Both Aiken and West (1991) and
Cohen et al. (2003) provide thorough descriptions of how to
test interactions among continuous IVs as well as interac-
tions between continuous and categorical IVs. These meth-
ods require only a program that can perform multiple re-
gression analysis and can therefore be used with any
existing statistical software package. The only complication
is that the IVs may need to be transformed or recoded, and
new terms representing the interactions may need to be
created by multiplying values together. The work required
to analyze interactions when the IVs are treated continu-
ously is therefore not much greater than that required to
analyze them categorically. The primary effort will be for
those unfamiliar with these methods to learn them. This
one-time investment will provide ongoing dividends in
more powerful and accurate interaction tests (Maxwell &
Delaney, 1993).

It is easier to present the results from analyses using
dichotomized IVs. After a researcher obtains a significant
result, the next thing he or she must do is explain what that
result means to the audience. When the test involves
the relation between a categorical IV and a continuous DV,
the researcher can explain the result by simply providing the
means of each of the groups along with post hoc analyses
indicating which groups are significantly different from
each other. The presentation of a relation between a con-
tinuous IV and a continuous DV is slightly more compli-
cated. There are no group means to present; instead, the best
that a researcher can do is present a regression line illus-
trating the relation. While these are reasonably well under-
stood by the academic community, they are sometimes seen
as more difficult to interpret because there are no post hoc
tests specifying which values of the IV are significantly
different from each other.

The difficulty in presenting the results of analyses with
continuous IVs is exacerbated when the statistical model
includes interaction terms. With categorical IVs, the indi-
vidual cell means can be plotted, providing a visual display
of how the effect of one variable changes across different
levels of other variables. The strength of these changes can
be explored with “simple effects tests,” which are used to
statistically test the differences between the levels of one
factor at a specific combination of the levels of the other
factors involved in the interaction. The researcher can un-
derstand the interaction by seeing where the simple effect
tests are significant and where they are not (Keppel, 1991).
In a similar way, interactions involving continuous IVs and
DVs are typically examined by comparing the “simple
slopes,” which are regression equations relating one of the
IVs to the DV at a particular combination of the levels of the
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other IVs involved in the interaction (Aiken & West, 1991).
The researcher can understand the interaction by comparing
the simple slopes for one variable across different levels
of the other variables involved in the interaction.

Even though parallel methods for interpreting interactions
exist whether the IVs are continuous or dichotomized, it is
typically much easier to perform simple effects tests and graph
the cell means than to examine the interaction continuously.
Individual cell means are fairly easy to compute and are
automatically provided as part of the ANOVA output by most
statistical software packages. Simple slopes are not typically
provided following a regression analysis, and instead must be
computed by substituting the appropriate values into the esti-
mated regression equation. It is also easier to plot interactions
analyzed with ANOVAs than those analyzed with regression.
Cell means can be easily entered into most presentation soft-
ware packages to generate either bar or line graphs illustrating
an interaction effect. Very few statistical packages generate
graphs based on either regression equations or simple slope
coefficients, so the specific points on the simple slopes plot
must be estimated individually and then used to create the
graph in a separate program. In addition to the difficulties
involved in presenting interactions involving continuous IVs,
many researchers are not familiar with tests or plots of simple
slopes. This may cause some members of the audience to
ignore simple slopes plots or interpret those cases incorrectly.

Although the major software packages do not currently
provide ways of automatically generating simple slopes plots,
such options will likely become available in the near future,
given the criticisms surrounding the use of dichotomized mea-
sures. In the meantime, a number of resources are available on
the Internet to help researchers interpret interactions involving
continuous IVs. The following websites contain tools that will
help researchers create simple slopes plots:

http://www.stat-help.com/spreadsheets.html
http://www.jeremydawson.co.uk/slopes.htm
http://people.ku.edu/�preacher/interact/index.html
http://www.upa.pdx.edu/IOA/newsom/macros.htm

Reasons Related to the Prior Use of the Variable

The field has identified theoretically meaningful cutoff
points on the variable being dichotomized. Whereas some
measures are almost exclusively used in research settings,
others are commonly used to assist real-world decision
making. For example, IQ tests have been used to determine
whether a child will be admitted to an accelerated learning
class, Psychopathy Checklist–Youth Version (PCL-YV;
Forth, Kosson, & Hare, 2003) scores have been used to
determine whether an adolescent offender will be treated in
juvenile court or sent to adult criminal court, and Beck
Depression Inventory (BDI; Beck, 1978) scores have been
used to determine whether a patient will be referred for
psychological treatment. To make these decisions easier,

psychologists have commonly established threshold scores
to distinguish meaningful groups. IQ scores are therefore
used to identify children who are “gifted,” PCL scores are
used to identify offenders who are “psychopaths,” and BDI
scores are used to identify patients who are “clinically
depressed.” These classifications are then used as a basis for
decision making.

The logic behind this reason for dichotomization is that
researchers should treat a measure as a categorical variable
in their analyses if the measure is most commonly used as
a categorical variable in practice. These researchers ques-
tion the extent to which research in which continuous ver-
sions of a scale have been used applies to the performance
of those measures when they are dichotomized. They sug-
gest that measures with theoretically meaningful cutoff
points should be analyzed categorically because this best
parallels the way the measures will be used in the field. This
argument is valid if the purpose of the research is to identify
how well the measure will perform in a real-world setting.
However, it is not valid if the purpose of the research is to
understand the relations between the construct underlying
the measure and other variables or to establish the validity
of the measure. In these latter cases, the study methods
should focus on accurately manipulating and measuring the
involved constructs and not on replicating the real-world
environment (Mook, 1983). As reviewed earlier, analyzing
the measure continuously typically provides researchers
with more power than analyzing it dichotomously, helping
to prevent erroneously nonsignificant results. Researchers
investigating the theoretical relations with the underlying
construct should therefore avoid dichotomizing measures in
their analyses, even if the construct is commonly treated
categorically in applied settings.

Researchers have typically dichotomized the variable in
the past. Sometimes the validity of the methods used in
research is established through a systematic analysis. Other
times, the validity is established through common usage.
For example, Fisher’s (1925) original suggestion that re-
searchers choose an alpha of .05 was provided with very
little justification. Despite this, it has become the expected
cutoff for determining statistical significance simply be-
cause it has been used so often, to the point where research-
ers must explicitly justify the use of any other value. Sim-
ilarly, the procedure of dichotomizing continuous variables
has become the accepted and expected practice in certain
research domains, to the point where reviewers may ques-
tion the decision of a researcher to work with a continuous
rather than a dichotomized indicator. Instead of being
viewed as a strength, the fact that relations estimated with
continuous indicators are typically stronger than those esti-
mated with dichotomized indicators may be perceived as a
type of “cheating,” because this advantage was not used by
prior researchers. There is the additional issue that changing
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the analytic method could make the results from the current
study less comparable to those performed in the past.

In cases where dichotomized indicators do not perform as
well as continuous indicators, there are several theoretical
benefits to be gained from changing a tradition of using di-
chotomized indicators to a tradition of using continuous indi-
cators. First, the estimated effect sizes obtained with continu-
ous indicators would more accurately reflect the relations
between the underlying constructs than those obtained with
dichotomized indicators. This difference can also be important
when researchers try to compare the strength of the effect of
interest to those found in other literatures. Second, the actual
estimated size of an effect will typically be larger when using
continuous indicators. Stronger effects are commonly seen as
more interesting and important, so using continuous indicators
can make it easier to argue for the value of studying a particular
phenomenon. Finally, since analyses performed with continu-
ous indicators typically produce larger effect sizes, it would be
easier to detect the presence of moderators and mediators of
the effect of interest. Weaker effects by definition have more
random error in them, making it more difficult to precisely
examine how the effect varies across different levels of a
moderator. Mediation effects are calculated as the product of
the relation of the IV with the mediator with the relation of the
mediator with the DV. Dichotomized indicators typically have
weaker relations with the mediators, thereby making it more
difficult to obtain significant mediation tests.

While it is true that the effects obtained using continuous
and dichotomous indicators are not directly comparable,
there are mathematical transformations that will allow re-
searchers to produce comparable effect sizes adjusting for
the differences. After the dichotomized statistics have been
corrected, results from a study can be directly compared and
contrasted with the prior work in the literature. If there is a
correlation between a dichotomized indicator and a contin-
uous outcome measure, researchers can estimate the ex-
pected value of the correlation they would have obtained
using a continuous indicator using the formula

r�continuous	 � r�dichotomized	��PQ

h �,

where P and Q are the proportions of observations falling
into the two categories of the dichotomized variable (so
Q � 1 � P), and h is the height of the standard normal
distribution at the point at which the probability to the left
of the Z is equal to either P or Q (the heights will be the
same at both points; Cohen et al., 2003). To compute h, one
must first use a table of the standard normal distribution to
determine the value of Z that has a p value corresponding to
P (Q could also be used here in place of P). After that, h can
be calculated from the formula

h �

exp�� Z2

2 �
�2


,

which is the probability density function for the standard
normal distribution. When researchers using dichotomized
variables report t statistics comparing the two groups in-
stead of correlations, Hays (1994) and Rosenthal (1994)
noted that the corresponding correlation could be computed
using the formula

r�dichotomized	 � � t2

t2 � df
,

where t is the t statistic comparing whether the two groups
are different on the outcome, and df represents the degrees
of freedom for that test. After computing the dichotomized
correlation using this formula, researchers can use the prior
formulas to determine what the relation would have been
had the variable been treated continuously. In considering a
relation between two dichotomized variables, one could use
the data from the 2 � 2 contingency table to calculate
Chambers’ re (Chambers, 1982) or the cosine approxima-
tion to the tetrachoric correlation (Alexander, Alliger, Car-
son, & Barrett, 1985). These statistics are used to estimate
the correlation between the latent continuous variables in
ways that are not influenced by the effects of dichotomiza-
tion (Alexander et al., 1985).

Conclusions

The common belief among methodologists has been that
researchers should always treat continuously measured vari-
ables in a numeric form (i.e., using a continuous real-valued
number system to represent variable magnitudes) and that
dichotomization leads to less powerful and less accurate sta-
tistical tests. Our results indicate that the picture is a bit more
complicated than that. Monte Carlo simulations verified that
analyzing a continuously measured variable in its original
numeric form works well regardless of the nature of the latent
variable or its relation to the outcome measure of interest.
However, we additionally found that there are some circum-
stances in which the dichotomized indicator performed just as
well or even slightly better than the continuous indicator.
Dichotomized indicators always appeared to be viable when
the data were subjected to extreme group analysis. When
extreme group analysis was not used, dichotomized indicators
appeared to perform at least as well as continuous indicators
when (a) the underlying distribution of the latent variable was
strongly categorical, (b) the proportion of individuals assigned
to each category matched the proportions found in the latent
distribution, and (c) the continuous measure to be dichoto-
mized was highly reliable. Our simulations showed that vio-
lating any of these three criteria caused the dichotomized
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indicator to perform notably worse than the original continuous
indicator. The performance of the continuous indicator was
consistently high regardless of the nature of the latent variable
or its relation to the outcome variable. We would therefore
suggest that researchers use continuous indicators whenever
there are doubts as to whether these criteria have been satisfied.
If the criteria are met, the continuous indicator will perform at
a level that is comparable to that of the proportional split. If any
of the above three criteria fail to be met, however, then using
the continuous indicator will provide more accurate results.

Our simulations verified that dichotomization will reduce the
influence of outliers in data analysis. However, it does so
without consideration of why the observations are unusual.
The optimal way to handle an outlier depends on whether the
unusual value was caused by a scoring error, by the influence
of an external variable, by the case being from a different
population, or simply by natural variability in the data. It is
better to examine each outlier and determine whether it repre-
sents appropriate data. When the outliers represent appropriate
data, our simulations showed that Winsorizing the variable
provided better results than dichotomizing the variable.

Researchers have commonly chosen to dichotomize con-
tinuous variables because it was easier to present the results
from analyses with categorical predictors than from those
with continuous predictors. Although continuous and di-
chotomized indicators commonly lead to the same conclu-
sions, dichotomization still reduces effect sizes (Cohen et
al., 2003), which could bias meta-analytic reviews of the
literature and affect the perceived importance of the vari-
able. It may also cause errors in power analyses, leading
researchers in future studies to use sample sizes that are
unnecessarily large. We considered the argument that it is
easier to analyze and interpret the results of interactions
when the variables are categorical than when the variables
are continuous. However, the methods for testing interac-
tions with continuous variables have been well defined and
can be performed with standard statistical packages. Many
researchers are more accustomed to presenting the results
from categorical than from continuous analyses, and most
software packages provide more options for graphing the
results for categorical than for continuous predictors. How-
ever, we described a number of tools that can be used to
illustrate the results of models using continuous predictors,
which will more accurately illustrate the trends in the data
than will graphs based on dichotomized indicators.

We considered the possibility that dichotomized indica-
tors may be more appropriate when the field has identified
theoretically meaningful cutoff points. We concluded that
while this is a valid justification for dichotomization if the
purpose of the research is to show the performance of a
dichotomized measure, it is not a valid justification when
the purpose of the research is to understand relations among
theoretical constructs. Sometimes researchers choose to di-
chotomize a variable simply because articles investigating

similar phenomena have dichotomized the variable in the
past. We would suggest that unless there is evidence that the
variable in question has the characteristics that allow con-
tinuous and dichotomized indicators to perform equiva-
lently, efforts to change the tradition of dichotomizing vari-
ables to one in which variables are treated continuously will
benefit the researcher and the literature as a whole.

In summary, our investigation revealed situations in
which the use of dichotomization is appropriate. Specifi-
cally, we feel that it is acceptable for researchers to use
dichotomized indicators in the following circumstances:

1. The study uses extreme group analysis.

2. The purpose of the research is to investigate how
a dichotomized measure will perform in the field.

3. The underlying variable is naturally categorical,
the observed measure has high reliability, and the
relative group sizes of the dichotomized indicator
match those of the underlying variable.

We believe that editors and reviewers should be willing to
accept analyses in which dichotomized indicators have been
used when researchers can successfully argue that their study
falls into one of these three situations. However, we suggest
that the use of the original continuous indicators should be
preferred in most other circumstances. Even in situations in
which the dichotomized indicator showed an advantage over
the continuous indicator, the continuous indicator still per-
formed almost as well. Researchers have little to lose by
choosing to work with continuous indicators and, at times,
a great deal to gain.
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Appendix

Details of the Data-Generating Model

In all the simulations, the latent variable � is generated
for each data point i � 1 . . . N by obtaining a random
variable x � U�0,1� and computing

�i �
1

1 � e�B�xi�M�, (A1)

where B is the continuity parameter and M is the skewness
parameter. Let us denote the latent variable mean and stan-
dard deviation as �� and s�, respectively. Using these, we can
create a standardized latent variable using the equation

�i
� � ��i � �� �/s� . (A2)

We computed the observed variable using the equation

mi � � R

�1 � R2��i
� � ei (A3)

with e � N�0,1� and R is the reliability parameter, implying
that the observed variable shares R2 variance with the latent
variable (so-called true variance).

The median-split indicator c is obtained by ranking the
values mi and defining

ci � �0 r�mi� � N/2
1 r�mi� � N/2 , (A4)

where r(�) is the rank operator and N is the total sample size.
The proportional split indicator is defined in a similar way
using the function

c
i
� � �0 r�mi� � M · N

1 r�mi� � M · N , (A5)

where M is the skewness parameter. For the simulations
with outliers, we defined a parameter F and a uniform
variable p � U�0,1�. We then generated the variable m as in
(A3). The actual variable used in the simulations was de-
termined using the equation

m
i
� � � mi pi � .05

mi � F
m pi � .05 , (A6)

where F is the outlier extremity parameter. Median split and
proportional split indicators are computed as in (A4) and

(A5). The Winsorized indicator w is determined using the
equation

wi � � mi mi � 2sm�

2sm� mi � 2sm�
. (A7)

For the simulations concerning the outcome variable, we
wish to obtain a random variable with a general logistic
relation with the latent variable, allowing the relation to be
either linear or nonlinear. To achieve this, we generated a
random variable � using the equation

�i �
1

1 � e�L� �i

s�
�.5� (A8)

to represent the part of the outcome variable that is related
to the latent variable �. � is a function of both the original
latent variable � and the linearity coefficient L. As illus-
trated in Figure 7, increasing the value of L makes the
relation between � and � less linear and more like a step
function. Once we determine �, we combine it with random
error to produce the outcome variable y using the equation

yi � �i � Qei, (A9)

where e � N�0,1�. The parameter Q is chosen such that the
correlation ry� between the latent variable and the outcome
remains constant while we change the linearity of the rela-
tion between the two variables (i.e., as we change L). This
is necessary to allow the simulations to be comparable
under different levels of linearity. Formally, we can obtain
ry� � K (in the simulations K � .70) by setting

Q �
�r��

2 � K2

K
. (A10)

It is easy to verify that if the variances of � and � are both
equal to 1 and the error term e has zero correlation with both
� and �, the correlation between y and � is equal to K.
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