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Abstract 

Despite publication of many well-argued critiques of null hypothesis testing (NHT), behavioral science research- 
ers continue to  rely heavily on this set of practices. Although we agree with most critics' catalogs of NHT's flaws, 
this article also takes the unusual stance of identifying virtues that may explain why NHT continues to be so exten- 
sively used. These virtues include providing results in the form of a dichotomous (yesho)  hypothesis evaluation 
and providing an index ( p  value) that has a justifiable mapping onto confidence in repeatability of a null hypoth- 
esis rejection. The most-criticized flaws of NHT can be avoided when the importance of a hypothesis, rather than 
t h e p  value of its test, is used to determine that a finding is worthy of report, and whenp z .05 is treated as insuf- 
ficient basis for confidence in the replicability of an isolated non-null finding. Together with many recent critics 
of NHT, we also urge reporting of important hypothesis tests in enough descriptive detail to permit secondary 
uses such as meta-analysis. 

Descriptors: Replication, Statistical significance, Null hypothesis testing, Methodology 

To demonstrate that a natural phenomenon is experimentally demonstra- 
ble, we need, not an isolated record, but a reliable method of procedure. 
In relation to the test of significance, we may say that a phenomenon 
is experimentally demonstrable when we know how to conduct an exper- 
iment [that] will rarely fail to give us a statistically significant result. 
(Fisher, 1951, p. 14) 

Readers of research reports reasonably desire confidence that 
published results constitute what Fisher called "demonstrable" 
phenomena-ones that can be confidently reproduced by con- 
scientious and skilled researchers. Such confidence is question- 
able for the class of isolated findings-ones that are not yet 
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supported by replications. Isolated findings are likely to occur 
either in initial empirical tests of novel hypotheses or as unpre- 
dicted results from exploratory analyses of data. 

An isolated finding might be judged as demonstrable (in 
Fisher's sense) if its empirical support suggests that it can be rep- 
licated. Before being able to discuss the relation of empirical evi- 
dence to a conclusion about an isolated finding's replicability, 
it is necessary to clarify what is meant by a finding being repli- 
cated or replicable. This, in turn, requires a choice between two 
approaches to conceiving replication: the choice between con- 
sidering the meaning of replication in the context of null hypoth- 
esis testing (NHT)' versus estimation. 

Editor's note. This paper was invited by the Board of Editors of Psy- 
chophysiology to address standards for reporting data and replication 
in psychophysiological research. The perspectives that were developed 
are not specific to psychophysiological data but rather apply to the anal- 
ysis and interpretation of various forms of empirical data. Although the 
authors' recommendations regarding statistical methodology might be 
regarded as controversial, it is our hope that the examples and recom- 
mendations offered in this article will focus attention on important issues 
concerning replicability in the field. 

'What is called null hypothesis testing here is called null hypothesis 
significance festing or simply significance testing elsewhere. The label 
significance is deliberately minimized in this article because some of the 
most objectionable characteristics of NHT stem from misleading uses 
of that word, which have developed in association with NHT. 
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In the NHT context, two statistical tests can be said to rep- 
licate one another when they support the same conclusion (non- 
rejection or rejection in a specific direction) with respect to  the 
same null hypothesis.' In contrast, in the estimation context 
two point or interval estimates are said to  replicate one another 
when they meet some criterion of proximity (e.g., overlap of 
confidence intervals). These two meanings of replication in the 
NHT and estimation contexts are so divergent that it does not 
appear to be possible to discuss replication coherently in a gen- 
eral fashion that encompasses both. Although the estimation 
approach to data analysis and reporting is often preferable to 
NHT, nevertheless it was easy to choose NHT as the perspec- 
tive on which to focus in this article. The choice was determined 
both because of NHT's prevalence in published empirical reports 
and because the problem of interpreting isolated findings is one 
that arises especially in the context of NHT. 

As will be seen below, there is a large literature of authori- 
tative attacks against NHT. Because there has been relatively lit- 
tle published defense of NHT in response to those attacks, it is 
remarkable that NHT nevertheless remains virtually uncontested 
in its dominance both of texts used in basic behavioral science 
statistics courses and of journals that publish original behavioral 
science empirical reports. As will be seen, the paradox of this 
opposition between pundits and practitioners has motivated 
much of this article, which is organized into three sections. The 
first section surveys some well-established criticisms of NHT. 
The second section describes some virtues of NHT that may 
explain why it remains so popular in the face of sustained heavy 
criticism. The third section gives recommendations for using 
NHT in a way that minimizes its flaws while sustaining its virtues. 

Criticism of Null Hypothesis Testing (NHT): 
Three Severe Flaws 

Because the Null Hypothesis Is "Quasi-Always" False, 
Testing It Is Uninformative 
In comparing psychology with physics, Meehl (1967; see also 
1978) noted that, because of the complexity of influences on 
measures used in psychological research, psychologists' null 
hypotheses are almost never exactly true. As Meehl described 
it, "the point-null hypothesis.. . i s  [quasi-] always false in bio- 
logical and social science" (p. 108). Furthermore, empirical tests 
usually associate the researcher's preferred theoretical predic- 
tion with a rejection of the null hypothesis. It follows from the 
quasi-falsity assumption that, when the researcher's theory is 
incorrect or irrelevant, there may nevertheless be a good chance 
that an empirical test will yield a null hypothesis rejection in the 
predicted direction. That is, assuming quasi-falsity, the null 
hypothesis should be false in an incorrect or irrelevant theory's 
predicted direction half of the time, and possibly more, if this 
direction is plausible from multiple theoretical perspectives. 
Therefore, the probability that an incorrect or irrelevant theory 
will be supported by a prediction-confirming null hypothesis 
rejection approaches 50% (or more) as the test's power increases. 
Meehl contrasted this analysis of spurious confirmation of theory 
resulting from increased research power in psychology with a 
description of statistical practice in physics. In physics, Meehl 

 his concept of replication in the NHT context is given a more for- 
mal definition below. 

observed, statistics are used chiefly to estimate theory-specified 
parameter values from empirical data. In this context of esti- 
mation (rather than NHT), increased power yields increased 
precision and in turn reduces the likelihood of spurious theory 
confirmations. 

In the fashion just described, Meehl targeted NHT as a meth- 
odological culprit responsible for spurious theoretical conclu- 
sions. Although similar observations had been made previously 
by (at least) Nunnally (1960), Binder (1963), and Edwards (1965) 
and although other analysts have argued that the psychology- 
versus-physics comparison is not so unfavorable to psychology 
(Hedges, 1987; Serlin & Lapsley, 1993), Meehl's critique nev- 
ertheless attracted great attention and continues to be cited as 
an authoritative statement of the view that NHT is fundamen- 
tally flawed because psychological null hypotheses are virtually 
never true.3 

NHT Doesn't Tell Researchers What 
They Want to Know 
Several critics have pointed out that the information that 
researchers should most want to  learn from research findings 
is not, and cannot, be provided by NHT. In particular, NHT 
does not establish the degree of truth or belief that can be cred- 
ited to the null hypothesis (Gigerenzer & Murray, 1987; Oakes, 
1986; Rozeboom, 1960). NHT does not offer an estimate of the 
magnitude of a treatment effect or of a relationship between 
variables (Cohen, 1994; Rosenthal, 1993). And NHT does not 
provide the probability that a finding can be replicated (Gigeren- 
zer & Murray, 1987; Lykken, 1968; Rosenthal, 1991). Rather, 
t h e p  value provided by NHT gives only a measure of the prob- 
ability of results as extreme as (or more extreme than) the 
obtained data, contingent on the truth of the null h y p ~ t h e s i s . ~  

NHT Is Biased Against the Null Hypothesis 
A very familiar comment about NHT is that it permits only one 
conclusive direction of interpretation, that is, against the null 
hypothesis. The folklore of the field has it that "You can't prove 
the null hypothesis." In terms of this folklore, what you can do 
is reject the null hypothesis and conclude that it is wrong, or you 
can fail to reject the null hypothesis and thereby be left uncer- 
tain about its truth. This folkloric assertion is somewhat mis- 
leading because it implies, incorrectly, that point hypotheses 
other than the null hypothesis can be proved. More properly, 
any point hypothesis (null or otherwise) has equal status in 
regard to provability. None is provable by the methods of NHT. 
Generally neglected in this debate is the possibility that, by using 
Bayesian or estimation methods, any hypothesis (including the 
null) can gain considerable credibility (see, e.g., Goodman and 
Royall, 1988; Greenwald, 1975). Nevertheless, there is indeed 
an asymmetry between the null and alternative hypotheses in 
NHT, which can be described as follows. 

A null hypothesis rejection discredits the null hypothesis and 
thereby supports alternative hypotheses, but a nonrejection 
result does not correspondingly support the null hypothesis and 

' ~ l t h o u ~ h  Meehl's description of the pervasive falsity of psycholog- 
ical point null hypotheses continues to have force, Frick (1995) recently 
pointed out that there are important cases of psychological research for 
which it is reasonable to treat the point null hypothesis as true. 

4 ~ n  the second section of this article, it is shown that this assertion 
understates the information provided by p values. 
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discredit alternatives. There are several reasons for this asym- 
metry, including (a) the null is typically a point hypothesis, 
whereas the alternative is typically a set or range of hypotheses; 
(b) when used in the Neyman-Pearson decision form, proba- 
bility of Type 2 error (falsely accepting the null) typically exceeds 
that of Type 1 error (falsely rejecting the null); and (c) perhaps 
most importantly, nonrejection of the null hypothesis is consid- 
ered to result plausibly from the researcher's use of invalid re- 
search operations. 

Greenwald (1975) investigated these and other forms of prej- 
udice against the null hypothesis by conducting a survey of 
researchers' practices and by constructing a simulation model 
of the effects of these practices on information transmission 
characteristics of the research-publication system (see also Oakes, 
1986, chapter 1). One of the more important varieties of preju- 
dice against the null hypothesis identified in that review comes 
about as a consequence of researchers much more often identi- 
fying their own theoretical predictions with rejections (rather 
than with acceptances) of the null hypothesis. The consequence 
is an ego involvement with rejection of the null hypothesis that 
often leads researchers to interpret null hypothesis rejections as 
valid confirmations of their theoretical beliefs while interpret- 
ing nonrejections as uninformative and possibly the result of 
flawed methods. Consistent with this conception of researcher 
bias, Greenwald's (1975) survey of 75 active social psychologi- 
cal researchers revealed that nonrejections of the null hypothesis 
are reported as being much less likely (than null hypothesis rejec- 
tions) to be submitted for publication (1:8 ratio). 

Another sense in which NHT is biased against the null 
hypothesis is captured by the concept of alpha inflation. It is well 
understood that p values become inaccurate when multiple null 
hypothesis tests are conducted simultaneously (e.g., Miller, 
1981; Selvin & Stuart, 1966). As a minimal example, when an 
experiment includes two independent tests of the same hypoth- 
esis, the probability that at least one of them will achieve an 
a 5 .05 criterion, conditional on truth of the null hypothesis, 
is not .05 but approximately . I0  (G 1 - .952). When multiple 
null hypothesis tests are conducted, but not all are reported- 
as when one reports only null hypothesis rejections from mul- 
tiple tests conducted in a single study, or when one publishes 
only studies that achieved null hypothesis rejections from a series 
of studies-the inflation of the reported (nominal) p value has 
been ignored and the reported value is therefore patently mis- 
leading. Despite the known impropriety of this practice, ignor- 
ing alpha inflation nevertheless remains a common practice, one 
that clearly reveals bias against the null hypothesis. 

Why Does NHT Remain Popular? Three Reasons 

In summary of the preceding section, NHT is multiply misused. 
In highly powerful studies, null hypothesis rejection is a virtual 
certainty. Null hypothesis rejections are likely to be overinter- 
preted as theory confirmations. Null hypothesis tests are mis- 
interpreted as providing information about the plausibility of 
the null hypothesis. Null hypothesis tests fail to  provide the type 
of information that researchers want most to  obtain. In use, 
NHT is biased toward rejection of the null hypothesis. All of 
these practices render NHT prone to faulty conclusions that 
leave readers of research reports, not to mention the NHT-using 
researchers themselves, misinformed about the empirical status 
of hypotheses under investigation. Nevertheless, and despite re- 
peated and prominent publication of critiques of NHT that have 

established these anti-NHT conclusions, behavioral scientists 
appear not to  have been deflected from sustained heavy use of 
NHT. 

One is tempted to conclude that NHT is an addictive afflic- 
tion of behavioral scientists. Despite repeated admonitions about 
its harmful effects, researchers not only sustain the behavior 
of NHT but practice it at the increasing pace afforded by mod- 
ern computational technology. Perniciously, the harmful ef- 
fects of using NHT may be felt more by audiences who see prod- 
ucts of NHT's practice than by the practicing users themselves, 
who experience the benefit of an occasional joyous rush toward 
publication. 

The metaphor of the NHT user as an addict may be clever, 
but it must also be, if not simply inaccurate, at least very incom- 
plete. This conclusion comes partly from observing the absence 
of impact of NHT-critical literature. This critical literature has 
been appearing steadily and with relatively little published oppo- 
sition for more than 30 years. An indicator of the balance of 
intellectual firepower on the NHT topic can be obtained by 
counting pro-NHT versus anti-NHT publications in prominent 
journals. This test indicates a heavy anti-NHT majority. Carver 
(1993) commented: "During the past 15 years, I have not seen 
any compelling arguments in defense of statistical significance 
testing" (p. 287). A prospective test of the present balance of 
authoritative opinion can be obtained by watching to see 
whether Cohen's (1994) recent and very prominent broadside 
against NHT elicits any substantial public defense of NHT. 

Despite sustained and consistent expert opposition, NHT per- 
sists as a dominant practice among behavioral scientists. In addi- 
tion, introductory behavioral science statistics courses persist in 
using texts that are based on NHT. An especially ironic indica- 
tor of the lack of impact of anti-NHT critiques occurs in the 
form of empirical publications by authors of NHT critiques 
(including one of the present authors), published after the ap- 
pearance of their critiques. Not invariably, but nevertheless very 
frequently, these publications reveal extensive use of NHT (e.g., 
Ambady & Rosenthal, 1993; Eckert, Halmi, Marchi, & Cohen, 
1987; Greenwald, Klinger, & Schuh, 1995; Hell, Gigerenzer, 
Gauggel, Mall, & Miiller, 1988; Lykken, McGue, Bouchard, & 
Tellegen, 1990). Even in a journal for which a prominent edi- 
torial "discouraged" the use of NHT (Loftus, 1993, p. 3), exam- 
ination of the most recent issues indicated use of NHT in every 
empirical article. 

Why does NHT not succumb to criticism? For lack of a bet- 
ter answer, it is tempting to credit the persistence of NHT to 
behavioral scientists' lack of character. Behavioral scientists' 
unwillingness to  renounce the guilty pleasure of obtaining pos- 
sibly spurious null hypothesis rejections may be like a drinker's 
unwillingness to renounce the habit of a pre-dinner cocktail. 

Now for a change of pace. In contrast to the despairing 
addiction metaphor that has been developed above, the follow- 
ing paragraphs argue that NHT survives because it provides two 
advantages to its users: (a) a dichotomous outcome that can be 
used as the basis for making needed decisions and (b) a mea- 
sure of confidence in the outcome of a study. The assertion that 
NHT has these two desirable properties requires reconsideration 
of two of the anti-NHT criticisms that were described in the first 
section of this article. 

Reason I: HT Provides a Dichotomous Outcome 
Because of widespread adoption of the convention that p 5 .05 
translates to "statistically significant," NHT can be used to yield 



A.  G.  Greenwald et al. 

a dichotomous answer (reject or don't reject) to a question about 
a null hypothesis. This may often be regarded as a useful answer 
for theoretical questions that are stated in terms of a direction 
of prediction rather than in terms of the expected value of a 
parameter. (Estimation is clearly the preferred method for the 
latter case.) Examination of published empirical reports in most 
areas of behavioral science reveals that theory-based hypotheses 
are very often stated in terms of the direction (and without spec- 
ifying the magnitude) of a difference between treatments or of 
a relationship between variables. (Such an observation was 
essential to  Meehl's [I9671 critique, and the observation contin- 
ues to be valid.) For these directional predictions, methods that 
yield answers in continuous form (such as effect size estimates 
or Bayesian estimates of posterior likelihoods of hypotheses) 
may be ~ n s a t i s f ~ i n g . ~  

An argument for the desirability of dichotomous research 
outcomes is not to be found in purely statistical reasoning. Rather, 
this virtue derives from the inescapable need of humans to act- 
more precisely, to choose between alternative potential paths of 
action. The following questions hint at the wide variety of sit- 
uations for which an answer in the form of yes versus no, or go 
versus no-go, is more valuable than one that, although possibly 
more informative statistically, is equivocal with respect to action. 

Is this treatment superior to a placebo? 

Does this experimental procedure constitute an effective 
manipulation of my independent variable (or do I need to look 
for an alternative)? 

Is the predictive validity of this aptitude test sufficient so that 
I should add it to the battery used to make my hiring or admis- 
sions decision? 

Is the similarity between monozygotic twins on this trait 
greater than that between dizygotic twins? 

Is there a match between this defendant's DNA and that 
found at the scene of the crime? 

Even though it is not a behavioral scientist's question, this last 
question, perhaps more than any of the others, justifies the 
assertions that (a) a point null hypothesis can sometimes be true, 
and (b) there can be a compelling practical need to convert a 
statistic's value on some continuous numerical dimension into 
a yes-no decision. In turn, this observation makes clear that 
dichotomous outcomes are not an intrinsic property of any sta- 
tistical test but only of the way in which the test is interpreted 
by its users. In the case of behavioral sciences, the widespread 
use of NHT as a basis for decisions depends on the willingness 
of a research community to treat some agreed-on p value as the 
boundary for deciding how to act on an empirical result. 

' ~ n  almost reflexive response to this assertion by an estimation 
advocate could be: "Yes, but the estimation method of computing con- 
fidence intervals provides the advantages of estimation while also per- 
mitting a dichotomous judgment on the data." To that response, we can 
only reply "Amen." The recommendations offered in the third section 
of this article urge uniform reporting of estimation statistics to accom- 
pany NHT. 

Reason 2: p Value as a Meaningful Common- 
Language Translation for Test Statistics 
Computed p values provide a well-established common trans- 
lation for a wide variety of statistics used in NHT. The transla- 
tion to p value is produced in the routine operation of many 
computerized procedures for calculating t ,  F ,  r ,  P ,  X 2 ,  and 
other familiar statistics. As a consequence, most researchers 
accumulate far more numerical experience with p values than 
with the various statistics that are so translated. Furthermore, 
p values have an informal, intuitive interpretation that is far 
more readily perceived from the report of a test outcome in 
p value form than from its report in an unconverted two-dimen- 
sional metric that combines degrees of freedom with t or F o r  
r, and so on. In its informal interpretation, the p value is an 
approximate measure of how surprised we should be by a result 
when we assume that the theoretical or other basis for predict- 
ing it is nonsense. Unlike anything that can be perceived so 
directly from t ,  F, or r values (with their associated df ), a p val- 
ue's measure of surprise is simply captured by the number of 
consecutive zeros to the right of its decimal point. A result with 
two or more leading zeros in its p value is not easy to dismiss, 
no matter how misguided its underlying rationale appears to be. 

Reason 3: p Value Provides a Measure of Confidence" 
in Replicability of Null Hypothesis Rejections 
The published anti-NHT literature is a source of many assertions 
about the lack of justification for interpreting p values in any 
of several ways that suggest their providing a continuous mea- 
sure of some interesting property of research outcomes. These 
assertions are often contestably accurate. In particular, as the 
investigators cited in the following list and others have pointed 
out, p values (more properly, their complements) should not be 
interpreted as (a) the probability that the null hypothesis is false 
(e.g., Cohen, 1994; Oakes, 1986), (b) the probability that the 
theory that motivated the empirical test is correct (e.g., Meehl, 
1967), (c) the probability that an exact replication will repeat the 
original finding (Carver, 1978, p. 385; Gigerenzer & Murray, 
1987, p. 24), or (d) a measure of any parameter of the popula- 
tion from which subjects were sampled (Bakan, 1966, p. 428). 

Although p values are not legitimately interpreted in any of 
the ways just listed, one can also find authoritative assertions 
that p values do provide continuous measures of some aspect 
of confidence that can be placed in research findings. The fol- 
lowing are some examples. 

[Slurely, God loves the .06 nearly as much as the .05. Can there be any 
doubt that God views the strength of evidence for or against the null 
as a fairly continuous function of the magnitude of p? (Rosnow & 
Rosenthal, 1989, p. 1277) 

[Editors must make] a judgment with respect to confidence to be placed 
in the findings-confidence that the results of the experiment would be 
repeatable under the conditions described. . . . [A]n isolated finding. . .a t  
the .05 level or even the .O1 level was frequently judged not sufficiently 
impressive to warrant archival publication. (Melton, 1962, pp. 553-554). 

It has been argued in this section that the associated probability [i.e., 
p value] of a significance test is indeed amenable to an inferential inter- 
pretation. (Oakes, 1986, p. 29) 

-- - 

6This use of confidence is ~ t s  customary meaning found in any dic- 
tlonary, not to be confused wlth ~ t s  usage In the statistical concept of 
con frdence mterval. 
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p value at Study 1 (log scale) d at Study 1 

p value at Study 1 (log scale) d at Study 1 

Figure 1. Estimated replicability as a function of p value (log scale) and effect size (d), assuming a two-treatment repeated-measures 
design with selected samples sizes (ns) and selected levels of between-treatment population correlation (r) of the dependent vari- 
able. The shaded portion of each plot gives values that are not properly replicabilities because the initial result is not a null hypoth- 
esis rejection in these regions. These regions of the plot show the probability of obtaining a null hypothesis rejection (at a = 
.05, two-tailed) from a second study, contingent on the p value of a first study that did not reject the null hypothesis. 

In pursuit of the intuitions represented by these remarks, the 
authors undertook to examine with some care the proposition 
that p value provides a measure that reflects some aspect of con- 
fidence in research outcomes. A demonstration of the validity 
of that intuition could contribute much to explaining behavioral 
researchers' attraction t o p  values. The conclusion that will be 
reached is that, unlike an effect size (or a confidence interval), 
a p value resulting from NHT is monotonically related to an esti- 
mate of a non-null finding's replicability. In this statement, rep- 
licability (which is defined more formally just below) is intended 
only in its NHT sense of repeating the reject-nonreject conclu- 
sion and not in its estimation sense of proximity between point 
or interval estimates. 

For purposes of the analysis that leads to results displayed 
in Figure 1,  the NHT sense of replicability is here defined as the 
estimated probability that an exact replication of an initial null 
hypothesis rejection will similarly7 reject the null hypothesis. 
(To repeat: This definition of replicability is suitable only for 
the NHT context; it does not capture what is meant by replica- 
bility in the estimation context.) As defined in this fashion for 
the NHT context, replicability can be computed as the power 

- -- - 

'This deflnltlon of rephcablllty spec~f~es  "srmrlarly reject the null 
hypothes~s" to exclude cases In whlch two studles both reject the null 
hypothes~s but wlth very different patterns of data (e.g., wlth opposlte 
d~rectlons of difference between means) 

of an exact replication study, which can be approximated with 
the formula given in Equation 1 (cf. Hays, 1995, p. 329)' 

where tCri, is the critical t value needed to reject the null hypoth- 
esis, df is the degrees of freedom, P(  ) is the probability under 
the cumulative normal distribution, and t l  is the observed 
t value from the initial study. 

Equation 1's use of the observed t value from the initial study 
(in the numerator of the right-hand expression) incorporates 
an assumption that the effect size to be expected for an exact 
replication is the effect size observed in the initial study. This 

-- - - - - ~ - 

'Equation 1 is an approximation because it is based on a normal 
distribution approximation to the noncentral t distribution and because 
it uses the effect size from the initial study as the estimate of the (un- 
known) effect size expected for the exact replication. The former intro- 
duces very little error, whereas the latter makes it likely that the estimates 
shown in Figure 1 are too high, as is discussed later in the text. The effect 
of the normal approximation to the noncentral t was checked by com- 
puting selected points in several of the plots in Figure 1;  discrepancies 
between the Equation 1 value and values using the noncentral t were 
small enough so that plots using the latter would not noticeably devi- 
ate from those shown in Figure l .  
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generalization from past to  future involves a step of inductive 
reasoning that is (a) well recognized to lack rigorous logical 
foundation but is (b) nevertheless essential to ordinary scientific 
activity. Some concerns about the accuracy of this assumption 
are noted four paragraphs below. 

For computations in producing the plots of Figure 1, sam- 
ple size (and therefore df) for the replication study was assumed 
to be the same as for the initial study. An easily seen direct impli- 
cation of Equation 1 is that, when the observed t for the initial 
study equals the critical t value ( a n d p  is thus exactly .05), then 
the numerator of the right-hand term becomes zero, and the 
power for the replication is .50 ( =  P [ z  5 0.01). Stated more 
intuitively, when the expected effect size exactly matches the one 
needed to achieve p = .05, there should be equal chances of 
exceeding or falling short of that value in an exact replication. 

To show the relation of p value, sample size, and effect size 
to replicability, Figure 1 displays estimated replicabilities for a 
two-treatment repeated-measures design. The p values, sample 
ns, and effect size ds used as parameters are values assumed 
to have been observed in the initial study. For the upper left 
panel, two-tailed p values between 1 and .00005 and ns of 20, 
40, 60, 80, 100, and 120 were converted into t ,  values and df 
(= n - l ) ,  and t,,,, was the tabled critical value for a = .05, 
two-tailed, for the given df. The replicabilities on the ordinate 
are the power values obtained by applying Equation 1.  (In these 
computations, replication success does not mean that the rep- 
lication matches or exceeds the initial study'sp value; rather, the 
criterion for replication of a null hypothesis rejection is uni- 
formly a = .05, two-tailed.) The upper right panel was produced 
similarly, by converting ds between 0.0 and 1.4 along with the 
various ns into values of t ,  used in Equation 1. For both upper 
panels, the correlation between paired observations was assumed 
to be zero. Note that the two upper plots resemble those that 
would be obtained from between-subjects designs in which the 
ns given in the legend denote the sample size in each cell. For 
the lower panels, with n fixed at 20, the correlation between 
paired observations was varied across the levels of r = 0, .2, .4, 
.6, and .8. These increasing correlations leave effect size (d) 
unaltered9 but increase power substantially, resulting in the 
varied curves for replicability as a function of r and effect size 
shown in the lower right panel. Because the effect of increas- 
ing r that increases replication power also decreases the p value 
of the initial study, the five curves of the lower left panel are 
entirely superimposed, leaving the (incorrect) appearance that 
four curves have been omitted from the plot. 

The difference between the two left and the two right pan- 
els of Figure 1 is very striking. The two left panels show that rep- 
licability is closely related to thep  value of an initial study, across 
variations of sample size and correlation between treatments in 
a repeated-measures design. By contrast, the two right panels 
show the lack of any simple relation of effect size to replicability. 
This contrast provides the basis for observing that the p value 
of a study does provide a basis for estimating confidence in rep- 

'More precisely, effect size is unaltered by variations in r when the 
unit for effect size is the pooled within-treatment standard deviation. 
This is the effect size measure that is considered most justifiable in meta- 
analysis, especially when results from between- and within-subjects 
designs are being combined in estimating a common effect size (Glass, 
McGaw, & Smith, 1981, p. 117). By contrast, the unit for effect size that 
is used in computing power is the standard deviation of the difference 
between treatments. 

licability of an isolated finding, when replicability is understood 
exclusively in its NHT-context interpretation. 

In using Figure 1 to estimate the replicability of an isolated 
finding from its reportedp value, one must exercise caution. The 
plotted curves are best regarded as upper bounds of estimated 
replicability because of one difficult-to-justify assumption that 
was used in constructing the figure. The difficult-to-justify as- 
sumption is that the expected effect size of an exact replication 
is well estimated by an isolated finding's observed effect size. 
A more justifiable expectation is that the effect size for an exact 
replication of an isolated finding is likely to be smaller than the 
observed effect size. This alternative view can be based on the 
general principle of expected regression toward the mean and 
on two more technical lines of argument (the details of which 
will not be presented here): (a) a maximum likelihood analysis 
offered by Hedges and Olkin (1985, chapter 14) and (b) a Bayes- 
ian analysis whenever the distribution of belief (over hypotheses) 
prior to the initial study accords greater likelihood to smaller 
effect sizes than to the observed effect size. Therefore, in using 
Figure 1 to estimate replicability of an isolated finding, it may 
be wise to assume that expected replicability is lower than the 
plotted value. 

In conclusion of this section, one of the criticisms of NHT 
reviewed in the first section of this article was that p values do 
not provide the information that they are sometimes interpreted 
as providing. It is now apparent that this uninformativeness crit- 
icism has been overstated. It has been overstated by writers who 
have asserted that p values cannot be interpreted as providing 
any information about confidence in the replicability of findings 
(e.g., Bakan, 1966, p. 429; Carver, 1993, p. 291). In fairness to 
these writers, they were implicitly or explicitly interpreting rep- 
licability in an estimation context, and in that context their asser- 
tions are accurate. However-and as shown straightforwardly 
in Figure I -in the NHT context that continues to prevail both 
in archival publication and statistics education in the behavioral 
sciences, p value does provide a measure of confidence in rep- 
licability of a null hypothesis rejection. Although neither the 
numerical value o f p  nor its complement (as suggested by Nun- 
nally, 1975) can be interpreted as an estimated probability of 
replicating a null hypothesis rejection, nevertheless, as can be 
seen in Figure 1, p value does provide a continuous measure that 
has an orderly and monotonic mapping onto confidence in the 
replicability of a null hypothesis rejection. 

This analysis of NHT should make the typical reader (who 
is with high probability a user of NHT) feel like the drinker who 
has just learned that moderate alcohol consumption has desir- 
able effects such as reducing the risk of heart attack (Peele, 1993; 
Shaper, 1993). Used in moderation, NHT can be of value. The 
next section gives suggestions for using NHT "in moderation." 

Using NHT While Avoiding Its Severe Flaws: 
Five Recommendations 

When used in conjunction with a conventional criterion (such 
as a = .05), NHT'sp value allows a yes-no appraisal of the accu- 
racy of a directional prediction and can be used to estimate (as 
in Figure 1) confidence that a similar null hypothesis rejection 
would result if it were possible for the study to be replicated 
exactly. For empirical results that are defined in terms of a pre- 
dicted direction of treatment effect or correlation, these two 
types of information are directly useful in assessing what Fisher 
(1951) called demonstrability. Because many theory-based hy- 
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potheses in behavioral science are formulated only as directional 
predictions, NHT is justifiably regarded as useful in appraising 
the results of their empirical tests. 

Although useful for evaluating empirical success of direc- 
tional predictions, NHT nevertheless bears severe flaws for 
which it has been justly criticized. In most cases, these flaws, 
which were summarized in the first section of this article, are 
avoidable accompaniments of NHT that can be minimized by 
using NHT cautiously and carefully. The remainder of this arti- 
cle attempts to give specific form to this advice. 

Recommendation I: Report p Values With an = 
Rather Than With a < or a > 
This recommendation is first, not because it is the most impor- 
tant but because it follows most directly from the analysis of the 
preceding section, where it was shown that replicability of a null 
hypothesis rejection is a continuous, increasing function of the 
complement of its p value. This attribute of p values makes it 
preferable to  report them numerically rather than either in the 
more traditional NHT form of relation to an alpha criterion or 
simply as "significant" or "not significant." That is, it is more 
informative to describe a result as (say)p = .003 rather than as 
either "p < .05" or "statistically significant," and, similarly, it 
is more useful to describe a result as (say) p = .07 rather than 
as either "p > .05" or "not significant." Because the most inter- 
pretable characteristic of p values is well captured by counting 
the number of successive zeros to the right of the decimal point, 
a useful rule of thumb may be to report p values rounded to the 
kth decimal place, where k is the position in which the first non- 
zero digit occurs: For example, p = .3, .07, .002, .0008, . . . , 
6 x lo-'. 

Recommendation 2: Treat p = .05 as an Interesting, but 
Unconvincing, Support for an Isolated NHT Result 
From Figure 1 (or Equation I), it can be seen that p z .05 trans- 
lates to  an upper bound estimate of 50% chance of obtaining 
a similar null hypothesis rejection from an exact replication. This 
50% figure is well short of any reasonable interpretation of what 
Fisher (1951) meant by a phenomenon being demonstrable. 
Therefore, when p r .05 for an isolated finding, an appropri- 
ate response on the part of the researcher should be to seek fur- 
ther support by conducting a replication. 

This second recommendation should not be treated as an 
absolute. There will be situations in which an isolated null 
hypothesis rejection at p G .05 warrants publication without rep- 
lication. When the theoretical content of a report is exceptional, 
evidence for the replicability of the accompanying data may 
seem a relatively minor consideration in appraising the value 
of the report. And, when the cost of collecting replication data 
is very expensive, the information value of reporting precious 
available evidence may outweigh the more ordinary value of 
establishing that the observed phenomenon is (in Fisher's sense) 
demonstrable. 

In attempting to replicate an isolated finding for which p = 
.05, the researcher should bear in mind that the estimated rep- 
licability of 50% shown in Figure 1 is almost certainly an over- 
estimate. It is an overestimate both because (a) as already noted, 
true effect size will often be lower than the initial study's ob- 
served effect size (on which the 50% replicability estimate is 
based); and (b) the 50% figure assumes an exact replication, 
which is a practical impossibility (see Caution I). Furthermore, 

and as argued by Lykken (1968), the researcher is generally well 
advised to conduct a replication that varies details of procedures 
that are irrelevant to the theory or hypothesis under investiga- 
tion. Success in such a conceptual replication provides greater 
confidence in the theory underlying the finding than does suc- 
cess in a literal or exact replication. 

Recommendation 3: Treat p n .OO5 as an Indicator of 
Demonstrability for an Isolated NHT Result 
Although other numerical replicability values could be sug- 
gested, the most obvious choice for a minimum level that would 
justify description as "demonstrable" is the 80% figure that 
Cohen (e.g., 1977, p. 56) advocated as a conventionally accept- 
able level of statistical power for NHT. Reading the abscissa of 
Figure I to find thep value that corresponds to an estimated rep- 
licability of .80 (for an isolated finding) yields p r .005 for all 
but the smallest value of sample size in the upper left panel of 
Figure 1. However, two substantial cautions must be attached 
to the suggestion that p G .005 can serve as a p value criterion 
of demonstrability. 

Caution 1 .  The 80% estimate of replicability that is associ- 
ated with p r .005 in Figure 1 applies to the ideal case of an exact 
replication. An exact replication is a test conducted with addi- 
tional subjects sampled in the same fashion as those in the ini- 
tial study and tested under conditions identical to those of the 
initial study. This can be recognized as a practical impossibil- 
ity, unless this replication has already been conducted- that is, 
conducted at the same time as the initial study and with random 
assignment of subjects either to the initial study or to the repli- 
cation. Any other replication would be rendered nonidentical 
at least by the intervening passage of time (cf. the discussion of 
"history" as a threat to validity by Campbell & Stanley, 1966). 

Caution 2. Figure 1's upper bounds become inaccurate to the 
extent that investigators engage in selective reporting of NHT 
tests. To the extent that investigators are more likely to report 
low than high p values or to report null hypothesis rejections 
rather than nonrejections, the p-value-based estimates of rep- 
licability provided by Figure 1 will be too high, possibly much 
too high. 

As the authors have discovered in responses to an earlier 
draft, this recommendation - its cautions notwithstanding - will 
be the most controversial assertion in this article. Some will 
object that p r .005 is too conservative a criterion for warrant- 
ing confidence in a result; it poses too great a hurdle for a new 
result to overcome to earn the approbation afforded by publi- 
cation. Others, taking just the opposite perspective, will observe 
that even p G .005 should be regarded as insufficient to justify 
confidence in the demonstrability of an isolated finding; no find- 
ing should be treated as confidently demonstrated when it has 
been obtained in only a single study. 

Recommendation 4: Report Results for AN Important 
Hypothesis Tests 
The selective reporting that prompted Caution 2 is a well-recog- 
nized flaw of NHT that was discussed in the first section of this 
article. There exist several methods (see Miller, 1981) for an 
upward adjustment of p values to  compensate for the alpha 
inflation that is associated with selective reporting of tests that 
yield low p values. It is not generally recognized that these ad- 
justments are unnecessary when researchers report all of the null 
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hypothesis tests that they conduct. For example, consider a 
researcher who has used NHT in a series of five tests of the same 
hypothesis, only one of which yielded a null hypothesis rejec- 
tion. If the report of this research neglects to mention the four 
nonrejection results, the reader can have no idea that a p  value 
reported at (say)p = .03 might be more properly interpreted as 
p = .15, a value that is Bonferroni adjusted for alpha inflation 
(see Kirk, 1995, pp. 119-122) and assumes the five tests to be 
independent of one another. The misleading lower p value im- 
plies (by using Figure I) a replicability of about 60070, compared 
with the more appropriate inflation-adjusted estimate of about 
30%. If the researcher had instead reported all five tests, read- 
ers would not be misled by the single result. More generally, 
when researchers report all NHT tests, it is possible to use nom- 
inal (rather than adjusted) p values without misleading readers- 
granted, the readers' information processing task becomes more 
complex. 

Unfortunately, the recommendation to report all findings is 
often difficult to follow. Furthermore, there are several good 
reasons for reporting results selectively. For example, some por- 
tion of the results may have been obtained with flawed proce- 
dures, producing results that might deserve to be considered 
uninformative; editors may request the suppression of indeci- 
sive findings; publication space considerations may oblige report 
of only a subset of findings; and so on. It is therefore frequently 
left to readers' imaginations to judge the extent to which a report 
has selectively presented findings. Editors might seek to mini- 
mize this problem by asking researchers to report all results for 
tests of interesting hypotheses, regardless of the fit between 
result and prediction. However, editors are unlikely to request 
such full reporting routinely, not only because of the demand 
that this policy would place on precious publication space but 
also (more to the point) because whatever their other skills, edi- 
tors are rarely clairvoyant. 

Recommendation 5: Report Enough Data to Permit 
Secondary Analysis 
Even while undertaking to document some virtues of NHT that 
justify its use with care and caution, the present authors have 
mentioned a few times that they regard estimation as having gen- 
erally greater value than NHT. The result of NHT, when re- 
ported in minimal form (i.e., as p a or p > a ) ,  has little use 
beyond the immediate one of informing a dichotomous reject- 
nonreject judgment. An accompanying report of either the nu- 
m e r i c a l ~  value or the numerical value and d f  of a test statistic 
such as t ,  F, or ,y2 (from whichp value can be determined) adds 
to the information value of an NHT report. Reporting of stan- 
dard deviations of dependent measures further facilitates sec- 
ondary uses of the reported results (especially in translating 

findings into effect sizes that can be included in a subsequent 
meta-analysis). The strong arguments for (a) considering effect 
sizes in the design and statistical analysis of research and (b) 
reporting data in detail sufficient to  permit secondary use have 
been made so effectively elsewhere that it suffices here to point 
readers toward those arguments (e.g., Cohen, 1990; Rosenthal, 
1993; Serlin & Lapsley, 1993). 

Conclusion 

Despite the dominant anti-NHT character of statistical meth- 
odological critiques of the past 30 years, NHT retains a tena- 
cious grip on methodological practice in behavior science. This 
article describes two features of NHT that can explain this par- 
adox. First, NHT allows conversion of test statistics into dichot- 
omous outcomes that can guide decisions in situations that call 
for practical action. Second, the p value computed in NHT is 
informative both about the surprise value of a null hypothesis 
rejection when one disbelieves its theoretical basis and as an indi- 
cator of the likelihood that an exact replication would similarly 
reject the null hypothesis. 

This article provides a very limited appreciation of NHT. The 
unusualness of even this limited appreciation will almost cer- 
tainly cause the article to be misread as providing unmitigated 
praise for NHT and the following sentence to be read as less than 
heartfelt. To the contrary, however, the authors (a) agree with 
the majority of published criticism of NHT (and have written 
some of it), (b) greatly dislike statistical analyses that focus more 
on "statistical significance" than on description of findings and 
their theoretical or practical importance, (c) regard estimation 
as a necessary approach for the long-term future of behavioral 
science, and, as was stated directly in the final section of this 
article, (d) endorse the reporting of estimation statistics (such 
as effect sizes, variabilities, and confidence intervals) for all 
important hypothesis tests. 

As Fisher (1951) stated in the passage quoted at the begin- 
ning of this article, an NHT result can be regarded as demon- 
strable when there exists a "reliable method of procedure" that 
will "rarely fail to give us a statistically significant result." Estab- 
lishing that a finding is confidently demonstrable in Fisher's 
(NHT) sense typically depends on conducting and reporting 
actual replications, even when an isolated finding seems statis- 
tically secure. NHT can advise a researcher who observes an iso- 
lated null hypothesis rejection as to whether a replication effort 
is likely to  succeed in repeating that result. As this article es- 
tablishes, the finding that "p = .05" falls well short of provid- 
ing confidence that the isolated finding will "rarely fail" to be 
observed. 
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