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In psychology and the behavioral sciences generally, the use of the hierarchical linear model (HLM) and
its extensions for discrete outcomes are popular methods for modeling clustered data. HLM and its
discrete outcome extensions, however, are certainly not the only methods available to model clustered
data. Although other methods exist and are widely implemented in other disciplines, it seems that
psychologists have yet to consider these methods in substantive studies. This article compares and
contrasts HLM with alternative methods including generalized estimating equations and cluster-robust
standard errors. These alternative methods do not model random effects and thus make a smaller number
of assumptions and are interpreted identically to single-level methods with the benefit that estimates are
adjusted to reflect clustering of observations. Situations where these alternative methods may be
advantageous are discussed including research questions where random effects are and are not required,
when random effects can change the interpretation of regression coefficients, challenges of modeling
with random effects with discrete outcomes, and examples of published psychology articles that use
HLM that may have benefitted from using alternative methods. Illustrative examples are provided and
discussed to demonstrate the advantages of the alternative methods and also when HLM would be the
preferred method.
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The hierarchical linear model (HLM) and its discrete outcome
extensions are useful and popular methods for analyzing data that
have a clustered structure, a common occurrence in psychological
research (for brevity, HLM will be used to encompass all outcomes
distributions for such models including HLM, hierarchical gener-
alized linear models [HGLM], etc.). As a testament to the wide-
spread use of HLM, in Footnote 1 in Bauer and Sterba (2011), in
a search of the psychological literature from 2006 to 2011, 211
studies were located using HLM’s many aliases such as “multi-
level model,” “random coefficient model,” “mixed model,” or
“hierarchical linear model.” On the other hand, only 14 studies
were found in the same timeframe using keywords related to
generalized estimating equations (GEE), another method used to
account for clustered data that is more popularly utilized in biol-
ogy, epidemiology, and medicine. Although this search did not
play a large role in their study (as evidenced by a majority of
the information appearing in a footnote), it does clearly illus-
trate the overwhelming preference for HLM in psychology
compared with generalized estimating equations by a wide
margin of about 15 to 1.

Goal and Outline for This Article

Although the distinction between HLM and other methods was
not the intended focus of Bauer and Sterba (2011), their study did
quantify the overwhelming tendency toward HLM with clustered
data even though it seems unlikely that cluster-specific inferences
obtained by HLM are desired or are of interest in 94% of psycho-
logical studies (details on cluster-specific inferences will be dis-
cussed in more detail in subsequent sections). This article’s pri-
mary aim is to raise awareness among psychologists that having
clustered data does not necessitate the use of HLM. Although
HLM is quite useful in many situations and lines of research, when
the clustering of the data is more a nuisance to accommodate rather
than a substantive interest, alternative population-averaged meth-
ods (PAMs; a class of methods that account for clustering without
explicitly splitting the model into multiple levels) may be a viable
option to address such scenarios in a simplified manner.

Although the popularity of HLM and the benefit of making
inferences at the cluster level or modeling interactions across
levels cannot be denied, we provide some evidence through a
review of graduate course syllabi that researchers in psychology
and related sciences may employ HLM with such frequency not
because of the inherent advantages but rather because alternative
models for clustered data such as cluster-robust standard errors
(CR-SEs; a.k.a. sandwich or empirical estimators), variance esti-
mation methods such as Taylor series linearization and replication,
or GEE are not fully considered or even known among psychol-
ogists while the tradition of using HLM is firmly cemented. Thus,
a goal of this article is to raise awareness among instructors of
clustered data analysis courses that PAMs could prove useful for
many researchers but are largely overlooked in research methods
and statistics courses aimed toward psychology students.
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Although we intend to provide a fair comparison between HLM
and alternative methods, we admittedly focus our presentation on
alternatives to HLM because these methods are rarely applied in
the psychological literature. There are many extant resources avail-
able that effectively introduce readers to these alternative methods
(e.g., Ballinger, 2004; Burton, Gurrin, & Sly, 1998; Gardiner, Luo,
& Roman, 2009; Ghisletta & Spini, 2004; Hanley, Negassa, Ed-
wardes, & Forrester, 2003; Hubbard et al., 2010; Twisk, 2004;
Zorn, 2001), but, as argued throughout this article, they are not
targeted toward psychologists, and psychologists may not be aware
of their utility to psychological research. Although this article will
provide some didactic detail, the primary motivation is to highlight
where the use of HLM may unnecessarily overcomplicate analyses
and where alternative methods may be better suited to researchers’
interests. As such, because there is a wealth of resources in the
psychological literature that discuss the merits of HLM, this article
primarily focuses on the advantages that can be realized with
alternative methods.

To outline the structure of this article, we first introduce the
foundational details of HLM and alternative clustered data meth-
ods and compare these methods with a particular focus on what
these alternative methods can provide for psychological research-
ers. Assumptions of each method are compared and contrasted as
are advantages and disadvantages of the use of each method. We
conclude with three illustrative examples that compare the use of
HLM and alternative methods for a model with a continuous
outcome and a model with a binary outcome. Broader implications
for the field are then discussed.

Syllabus Review

As evidence for the claim that psychologists and researchers in
related fields tend almost exclusively toward HLM, a convenience
sample of 67 syllabi ranging from 2008 to 2015 that listed readings
and a tentative outline of topics from graduate school courses in
the United States and Canada on modeling clustered, multilevel,
and/or longitudinal data were reviewed. Syllabi were found
through a simple Google search for “multilevel model,” “longitu-
dinal data analysis,” “correlated data,” “clustered data,” “nested
data,” “complex survey data,” “survey data analysis,” “cluster
robust errors,” generalized estimating equations,” and “hierarchi-
cal linear model” with “syllabus” placed after the course keyword.
As a result, only syllabi available publically were included. To be
in the sample, courses must have (a) focused primarily on clustered
data methods (e.g., economics syllabi were notably absent because
clustered data methods are commonly interspersed within broader
econometrics course sequences); and (b) have focused primarily
on regression-based methods.

Syllabi were found from eight different academic disciplines
from both the social sciences and the natural/health sciences.1 The
most widely represented disciplines were statistics (24%), biosta-
tistics (19%), education (15%), and psychology (15%). Table 1
shows the number of syllabi found from each respective discipline
that included HLM, PAMs, or both. Sixty-two of the 67 syllabi
(93%) included HLM (or one of its aliases such as mixed models,
random effects models, etc.) as a topic to be covered either in
lecture or through readings. However, only 64% (43/67) included
any coverage of at least one PAM.2 Moreover, large differences
were observed between the social sciences (criminology, educa-

tion, political science, psychology, and sociology) compared with
the natural and health sciences (biostatistics, public health, and
statistics). Only 24% (7/29) of the social science discipline syllabi
included PAMs as a topic to be covered in lecture or readings
while 92% (35/38) of natural and health science discipline syllabi
did so. Of particular note is that only one psychology syllabi
mentioned PAMs (in a course titled “Categorical Data Analysis”)
while at least 85% of syllabi in every natural or health science
discipline included PAMs. Although economics syllabi were not
included, the results would be likely be even more stark because
economics follows an opposing trend to psychology where HLM is
almost never used. As support, Petersen (2009) included a review
of methods to account for clustering in economics and he found
that fewer than 3% of studies included in his survey used HLM (p.
464).

Although this sample was convenient and not random or ex-
haustive and broad inference is not entirely warranted, it provides
some evidence that, assuming what is being taught in graduate
courses is indicative of what is applied in practice—in social
sciences, students do not appear to be exposed to a variety of
clustered data methods. Consequently, the 15 to 1 MLM-to-GEE
ratio found by Bauer and Sterba (2011) in psychological studies is
not surprising.

Overview of Methods

We will next provide an overview of three methods that are
useful when modeling clustered data: HLM, cluster-robust stan-

1 Some courses were cross-listed in multiple departments but syllabi
were ultimately classified within only a single discipline. In instances of
cross-listed departments, the department affiliation of the instructor was
used to uniquely classify syllabi in such cases. If the department was
ambiguous (e.g., educational psychology could be education or psychol-
ogy), the college was used for classification (e.g., College of Education vs.
College of Arts and Sciences). In one instance, the instructor of a cross-
listed course held appointments in multiple departments, so the specializa-
tion of her Ph.D. was used.

2 We want to note that in 12 out of the 67 syllabi (18%), the course title
indicated that HLM was the specific interest of the course (e.g., courses
with titles like “Hierarchical Linear Models” or “Introduction to Multilevel
Models”). However, the remaining syllabi had broader titles that did not
narrow the scope with titles such as “Analysis of Correlated Data,” “Ad-
vanced Regression Analysis,” or “Longitudinal Data Analysis.”

Table 1
Frequency of Syllabi Listing PAMs and HLM by
Department Affiliation

Discipline PAMs Only HLM Only
HLM and

PAMs Total

Biostatistics 0 1 12 13
Criminology 0 1 0 1
Education 0 8 2 10
Political science 1 2 1 4
Psychology 0 9 1 10
Public health 1 0 8 9
Sociology 1 1 2 4
Statistics 2 2 12 16

Note. PAM � population-averaged method; HLM � hierarchical linear
model.
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dard errors, and generalized estimating equations. To present a
more targeted narrative, the following discussion will primarily
focus on cross-sectional clustering (e.g., people within families)
although readers should keep in mind that the same principles
apply to longitudinal clustering (e.g., repeated measures clustered
within individuals). The following discussion will not present
extensive statistical detail: interested readers can find additional
mathematical information in Appendix A.

HLM

Conceptual overview. HLM accounts for the clustered nature
of data by directly modeling the clustering with random coeffi-
cients (Laird & Ware, 1982; Stiratelli, Laird, & Ware, 1984).
Regression coefficients in HLM consist of two possible types of
effects: a fixed effect and a random effect. Fixed effects are
estimated to represent the relationship between a predictor and the
outcome irrespective of which cluster observations belong to (as-
suming the predictor is not cluster-mean centered), similar to a
standard single-level regression model (Raudenbush & Bryk,
2002). For each cluster, a cluster-specific random effect may be
estimated (but is not required). Random effects capture how much
the relation between the predictor and the outcome differs from the
fixed effect estimate.

Mathematically, HLM for continuous outcomes can be ex-
pressed as

Yj � Xj� � Zjuj � �j, (1)

where Yj is an mj � 1 vector of responses for cluster j where mj is
the number of units within cluster j, Xj is an mj � p design matrix
for the predictors in cluster j (at either level in this notation) where
p is the number of predictors (which includes the intercept), � is
a p � 1 vector of regression coefficients, Zj is an mj � q design
matrix for the random effects of cluster j, uj is a q � 1 vector of
random effects for cluster j where q is the number of random
effects and p � q, E�uj� � 0 and Cov�uj� � G where G is q �
q, and �j is an mj � 1 vector of residuals of the observations in
cluster j where E��j� � 0, Cov��j� � Rj . HLM in frequentist
settings is typically estimated with either maximum likelihood or
restricted maximum likelihood whose details are beyond the scope
of this introduction (see Raudenbush & Bryk, 2002 for more
details). Variance of regression coefficients in HLM are calculated
by

VarHLM(�̂) ���
j�1

J

�Xj
TV̂j

�1Xj���1

(2)

where Vj � Var�Yj� � ZjGZj
T � Rj and standard errors are

obtained by taking the square root of the diagonal elements of
VarHLM��̂�.

As a conceptual example of HLM, consider a model for depres-
sion inventory scores taken from many clinics that contain an
overall intercept (a fixed effect) for all clinics. However, the
sample may contain some clinics with relatively few symptoms
(on average) and also some clinics with more severe symptoms (on
average) for which the intercept fixed effect may not be entirely
representative. So, a random effect for the intercept may be in-
cluded to more accurately reflect that depression scores are par-
tially dependent upon the clinic that patients visit. The variance of

the outcome is then partitioned into two-parts (or more if the data
have more levels to the hierarchy): within-cluster variance (R) and
between-cluster variance (G). The between-cluster variance cap-
tures the dispersion of the random effects from cluster to clus-
ter—if the between cluster variance is high, then knowing to which
cluster an observation belongs will be more informative for mod-
eling an individual’s score. The between-cluster variance, which is
not explicitly modeled in single-level models, helps to obtain more
appropriate standard error estimates for regression coefficient stan-
dard errors to account for the violation of the independence as-
sumption made by single-level models. Within-cluster variance is
interpreted similarly to error variance in single-level models and is
largely a measure of the accuracy of predictions from the model.
However, it is important to note that single-level models do not
partition the variance between levels and modeling clustered data
with a model that does not partition the variance will result in an
error variance term that combines variance from all levels.

Assumptions, properties, and advantages of HLM. When
modeling clustered data with HLM, 10 assumptions are made:

1. All relevant predictors are included in the model.

2. All relevant random effects are included in the model.

3. The covariance structure of the within-cluster residuals,
R, is properly specified (when the outcome is continu-
ous).

4. The covariance structure of the random effects, G, is
properly specified (for all outcomes scales).

5. The within-cluster residuals and the random effects do
not covary �Cov�u, �� � 0�.

6. The within-cluster residuals follow a multivariate nor-
mal distribution (when the outcome is continuous).

7. The random effects follow a multivariate normal distri-
bution (for all outcome scales).

8. The predictor variables do not covary with the residuals/
random effects at any other level �Cov�X, �� � 0,
Cov�X, u� � 0�.

9. Sample size is sufficiently large for asymptotic infer-
ence at each level.

10. With or without preprocessing, missing data are as-
sumed to be missing completely at random (MCAR) or
missing at random (MAR).

When modeling with HLM, the researcher must explicitly spec-
ify which Level-1 slopes and/or the intercept vary randomly in the
population and the covariance structure of the random effects. For
instance, the researcher must decide whether the random effects
for the slope covary with random effects for the intercept or if the
random effects for one predictor may covary with the random
effects for another predictor. Referring back to the depression
example, if “hours of therapy” were a predictor of depression
symptoms, with HLM, researchers would need to decide whether
the effect of hours of therapy differs for each cluster and, if so,
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whether the cluster-specific effects for number of hours of therapy
covary with the cluster-specific intercepts. Similarly, for continu-
ous outcomes, the structure of the within-cluster residuals must
also be specified. That is, covariance matrix of the within-cluster
residuals has to be selected by the researcher although it is often
assumed to have equal values on the diagonal and zeroes on the off
diagonal (i.e., an independence structure).

The inclusion of random effects in HLM makes it distinct from
the other methods that will be discussed in this article and, as a
result, Assumptions 2, 4, 5, 6, 7, and 8 are unique to HLM. To
varying degrees, these assumptions are important because standard
error estimates of regression coefficients likely will be biased
otherwise. Efficiency could also be decreased (standard errors are
larger than they need to be) which adversely affects power
(Agresti, Caffo, & Ohman-Strickland, 2000; Ferron, Dailey, & Yi,
2002; LeBeau, 2013).

However, violations of Assumptions 2, 4, and/or 6 do not
always have a large impact on model estimates. Verbeke and
Lesaffre (1997) showed that assuming normality of the random
effects (Assumption 7) even when the distribution is non-normal
still yielded consistent regression coefficient estimates so long as
all variables have fourth moments. Standard error estimates were
problematic when random effects were non-normal with small or
moderate samples (fewer than 120). Jacqmin-Gadda, Sibillot,
Proust, Molina, and Thiébaut (2006), Litière, Alonso, and Molen-
berghs (2007), and Agresti, Caffo, and Ohman-Strickland (2004)
have shown that misspecifying the structure of either the random
effects covariance or the distribution of the errors has a large effect
on standard error estimates throughout the model and, conse-
quently, on Type-I error rates and power. Assumptions 6 and 7 can
also be addressed directly in the model by specifying a distribution
other than normal (see, e.g., Lin & Lee, 2008; Liu & Yu, 2008;
Muthén & Asparouhov, 2008) although implementation of these
methods often requires a fairly high level of programmatic skill.

Misspecifying the number of random effects and/or their cova-
riance structure can also lead to biased point estimates when the
outcome variable is discrete (Litière et al., 2007). Thus, when
choosing to model clustered data with HLM, researchers with
continuous outcomes and large sample sizes can be fairly confi-
dent that their results are robust to a misspecified covariance
matrix or the exclusion of a random effect. However, with con-
tinuous outcomes with small or moderate number of clusters or
with discrete outcomes, a violation of either assumption can
adversely affect inference from model estimates. As such, with
the type of data frequently seen in applied psychological re-
search, the common strategy of solely including a random
intercept into the model without considering additional random
effects may not adequately account for clustering despite com-
mon perception to the contrary.

Estimation with discrete outcomes is one noted difficulty in the
use of HLM due to the inclusion of the random effects. In models
for continuous outcomes, the random effects can be integrated out
of the likelihood meaning that the likelihood function is averaging
over the random effects distribution. The result is that estimation
of the model is not much more complex than other models esti-
mated with likelihood techniques. However, with discrete out-
comes, there is no closed form solution for integrating the random
effects out of the likelihood function (Fitzmaurice, Laird, & Ware,
2012; McCalloch & Searle, 2001). Therefore, the likelihood must

be approximated with numerical integration as with Adaptive
Gaussian Quadrature (AGQ) or a Laplace Approximation or lin-
earized as with penalized quasi-likelihood (PQL; Breslow & Clay-
ton, 1993). These estimation methods for HGLM have more lim-
itations including vast computational overhead with multiple
random effects or biased estimates even when the number of
clusters exceeds 100 (e.g., Diaz, 2007; Pinheiro & Bates, 1995).

Very broadly, AGQ breaks up the likelihood into several small
components, evaluates each component, and then takes a weighted
sum of all components to approximate the integral. The number of
partitions is determined by Q � 1 where Q is the number of
quadrature points (which are user selected). As more quadrature
points are selected, the approximation becomes more accurate
because the likelihood surface is partitioned into smaller and
smaller pieces. The trade-off associated with many quadrature
points, however, is increased computational burden, so selecting
the appropriate number of points often requires balancing accuracy
with computational demand (Fitzmaurice, Laird, & Ware, 2012;
Givens & Hoeting, 2005). The number of computations per
iteration of the maximum likelihood algorithm is equal to JQq

where J is the number of clusters and q is the number of random
effects: the computation grows exponentially as the number of
random effects increases and model can take several hours to
converge in such cases (Kim, Choi, & Emery, 2013). The
Laplace Approximation, attempts to approximate AGQ with
Taylor series expansions, which reduces much of the computa-
tion burden (equivalent to using a single quadrature point).
Previous studies have noted that its performance is hampered by a
small number of clusters and/or small cluster sizes (Clarkson &
Zhan, 2002; Diaz, 2007; Joe, 2008; Kim et al., 2013; Raudenbush,
Yang, & Yosef, 2000). As an alternative, PQL approximates the
model rather than the likelihood function. That is, HLM with
discrete outcomes require a nonlinear link function to relate the
mean of the outcome distribution to a linear predictor—PQL
attempts to linearly approximate the model and then apply estima-
tion methods that are suitable for linear models (where the random
effects are able to be integrated out of the likelihood function).
Although appealing for its time-efficient estimation, the approxi-
mation tends to be worse than AGQ and model estimates have
been found to have substantial bias under nonideal conditions
(Diaz, 2007; Pinheiro & Bates, 1995; Zhou, Perkins, & Hui, 1999).

Methods for Cluster Sampled Data

The main focus of methods for single-level analyses of cluster
sampled data (e.g., cluster-robust standard errors, Taylor series
linearization, balanced repeated replication, jackknife replication)
is to estimate the standard errors of the regression coefficients in a
way that accurately reflects the process by which data were col-
lected. This is done by considering features of complex sampling
designs such as clusters, strata, and/or sampling weights. Because
of the relative scarcity of explicitly cluster sampled primary data in
psychology compared to naturally clustered data (which do not
have strata or weighting information), we will not discuss the
complex survey elements or methods to accommodate them in
more detail. For an accessible treatment of these methods, inter-
ested readers are referred to Heeringa, West, and Berglund (2010).

Regardless of whether observations are naturally clustered or
explicitly cluster sampled, methods for cluster sampled data can be
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applied to obtain standard errors that reflect the nature of the
clustering. Many clustered data methods can be implemented in
general software packages such as SPSS (complex samples), Stata
(svyset and svy commands with cluster option), SAS (Proc Sur-
veyReg and Proc SurveyLogistic), Mplus (TYPE � COMPLEX),
or a variety of R packages (sandwich, plm, and clusterSEs) while
additional software programs are dedicated specifically to clus-
tered data methods such as SUDAAN, WesVar, and IVEware
(Heeringa, West, & Berglund, 2010).

Cluster robust-standard error conceptual overview. Cluster-
robust standard errors (CR-SEs; also referred to as empirical
standard errors or the sandwich estimator) are methods for esti-
mating standard errors of fixed effects for a variety of models,
including HLM (i.e., CR-SE and HLM are not mutually exclusive;
Kovacevic & Rai, 2003; Pfefferman, Skinner, Holmes, Goldstein,
& Rasbash, 1998; Rabe-Hesketh & Skrondal, 2006; Rao, Verret, &
Hidiroglou, 2013). In fact, CR-SE are a germane step in the GEE
algorithm discussed in the next section. In this article, we will refer
to CR-SE in the context of estimating a single-level general or
generalized linear model whose standard errors are then estimated
CR-SEs but readers should note that CR-SE are much more widely
applicable.

Although the specific derivational details are provided in Ap-
pendix A, as a basic overview for the notation for CR-SEs, con-
sider a standard single-level regression formulated by

Y � X� � � (3)

for Y an n � 1 vector of outcomes, X an n � p design matrix, �
a p � 1 vector of regression coefficients, and � an n � 1 vector of
residuals assumed to be distributed Ni.i.d.�0, �2� for n the total
sample size, p the number of predictors, and �2 the estimate of the
residual variance. Under ordinary least squares (OLS), the regres-
sion coefficients have a closed from solution such that

�̂OLS � (XTX)�1XTY (4)

with the variance of the regression coefficients calculated by

VarOLS(�̂) � �2(XTX)�1 (5)

if the assumptions are upheld. CR-SEs alter the calculation of the
regression coefficient variance to accommodate assumption viola-
tions (i.e., homogeneity of variance and independence) such that

VarCR(�̂) � (XTX)�1�
j�1

J

�Xj
T�j�j

TXj�(XTX)�1 (6)

where standard errors are obtained by taking the square root of the
diagonal elements of VarCR��̂�.

Conceptually, with CR-SEs, first a standard single-level model
(e.g., with OLS or maximum likelihood as shown in Equation 3) is
used to estimate the regression coefficients (e.g., �̂OLS). In the
presence of clustering, bias in the standard error estimates are the
primary concern, so the regression coefficients with CR-SEs will
be identical to what would be obtained if the clustering was
completely ignored. More plainly, compared with a single-level
model, only the standard errors (and any quantities that require
them such as t statistics) will be different (notice the more complex
specification of Equation 6 compared with Equation 5). The stan-
dard errors from Equation 5 will be underestimated to the extent
that the clustering is informative. CR-SE address this with a statis-

tical correction based on the residuals (using Taylor series lineariza-
tion) to yield standard error estimates that more accurately reflect the
variability in the regression coefficient estimates given that clustering
is present in the data. In essence, this results in residuals being
summed by clusters (where clusters are assumed to be independent)
rather than by individual (which are known to be dependent on
cluster, noted by the middle parenthetical term in Equation 6 taking a
j subscript). In most cases, this process will inflate the standard error
estimates although it may possibly deflate estimates if the ICC is
negative.3 Note that no random effects are included in the model to
explicitly model variability across clusters—only fixed effect regres-
sion coefficient estimates are obtained from the model with standard
error estimates that account for clustering.

Assumptions, properties, and advantages of cluster-robust
standard errors. When estimating regression coefficient stan-
dard errors with CR-SEs, three assumptions must be upheld:

1. All relevant predictors are included in the model.

2. Observations between clusters are not related (there is not
a higher level of the hierarchy).

3. The sample size is sufficiently large for asymptotic in-
ferences at the cluster level.

Because CR-SEs can be implemented with a variety of models,
other assumptions unrelated to clustering must be upheld for valid
inference (e.g., the independence assumption of the general linear
model would not be required and heteroskedasticity due to clus-
tering would be permissible as CR-SE would address these issues).

Similar to HLM, the CR-SE estimates fully address the clustered
nature of the data. Unlike HLM, the model does not provide
random effect estimates and model output appears and is inter-
preted identically to a single-level model. Although this may not
intuitively seem highly advantageous, it does afford CR-SEs a few
distinct advantages over HLM and also GEEs (which are discussed
in the next section). Because there are no modeled random effects
and the variance is not partitioned between different levels, for
continuous outcomes, the expected mean square from a model with
CR-SE is identical to a single-level model. That is, the statistical
adjustment for clustering only affects the standard error estimates
of the regression coefficients, leaving the regression coefficient
estimates unaffected compared to a single-level model. This means
that CR-SEs can output model R2 and effect size measures that are
identical to what would be obtained through OLS because quan-
tities used in these calculations (sum of squares, expected mean
squares) are unaffected by the statistical correction to the standard
error estimates and the computational formulas are equivalent to a
single-level model (Hayes & Cai, 2007).4 This makes CR-SEs an

3 A negative ICC may be present, for instance, if a school district
intentionally tries to balance the demographic makeup of different class-
rooms in which case students are less like others in their own classroom
than those in different classrooms. We thank one of the anonymous
reviewers for providing the authors with this example.

4 There is some debate whether R2 values are equally interpretable when the
residuals are no longer independently and identically distributed and some
software programs suppress R2 values for such models. However, Wooldridge
(2003) states that “R2 (is a) consistent estimator of the population R-squared
whether or not the homoskedasticity assumption holds” (p. 265).
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attractive option for the multiple moderated regression strategy
popular in psychology when the data happen to be clustered
because the familiar regression metrics and the change in R2

between blocks can still be calculated. Additionally, intended
single-level models that have unforeseen clustering or partial clus-
tering can also be easily accommodated.

Again returning to the depression example, imagine a researcher
was interested in whether sex moderates the effect of hours of
therapy on depression symptoms. In a standard multiple moderated
regression, one would record R2 values first for a model with just
the hours of therapy variable (and also with possible relevant
covariates), then both hours of therapy and sex (along with rele-
vant covariates), and finally a model with hours of therapy, sex,
and their interaction (along with relevant covariates). �R2 is often
the primary interest of this common type of analysis in psychol-
ogy; however, if data are clustered such that patients are nested
within clinics, HLM does not yield an analogous R2 value. CR-SE
could be implemented without any change to the standard proce-
dure (with the added benefit that the standard errors would account
for clustering).

HLM analogues of R2 and effect sizes exist but it is much less
transparent how to treat the variance estimates at each level (i.e.,
Should only the within-cluster residual variance be used or should
it be combined with the between cluster variance? See Recchia,
2010 or Snijders & Bosker, 1994 for further discussion). It should
be noted that the Adjusted R2 statistic between CR-SEs and OLS
will not be identical because the clustering complicates the degrees
of freedom calculation (i.e., degrees of freedom are a function of
the number of clusters rather than the number of people with
CR-SEs).

Generalized Estimating Equations

Conceptual overview. Similar to CR-SEs, instead of account-
ing for the clustering by directly modeling random effects (and
their associated covariance structure) as in HLM, the clustered
structure of the data is treated more as a nuisance with GEE. Also
similar to CR-SE, GEE use regression coefficient estimates from a
single-level general(ized) linear model. Contrary to CR-SEs, GEE
uses the residuals to iteratively estimate a working correlation
matrix for observations within a cluster and these correlations are
then used to obtain updated estimates of the regression coefficients
that take clustering into account (Liang & Zeger, 1986; Zeger &
Liang, 1986; Zeger, Liang, & Albert, 1988). CR-SEs are then
applied at the end of the process to account for possible misspeci-
fications of the working correlation matrix.

Somewhat similar to HLM, with GEE, researchers provide
the initial working correlation structure that captures the gen-
eral relation between observations within a cluster. However,
unlike HLM, the working correlation structure does not have to
be correct (and it is in fact not assumed that the working
structure is correct) and only has to be in the very general
vicinity of the population structure (Zeger et al., 1988). This is
in opposition to HLM which assumes a specific form for the
variance, namely V j � Var�Y j� � Z jGZ j

T � R j as described in
Equation 2.

Using the initial working correlation matrix as a starting point,
an algorithmic process estimates and updates the working corre-
lation matrix based on the residuals to more accurately reflect the

strength with which individuals within a cluster are related to one
another. Unlike CR-SEs, both standard error and regression coef-
ficient estimates are then updated to reflect the correlation between
observations. That is, the correlation between the observations is
used when estimating the regression coefficients, unlike CR-SE
which assume working independence when estimating the regres-
sion coefficients. That is, generalized estimating equations will
yield potentially different regression coefficient estimates than if
clustering were ignored. This is in opposition to CR-SE which only
corrects the standard errors and does not affect regression coeffi-
cient estimates.

The first step in the GEE algorithm fits the model assuming the
data were independent (i.e., not clustered) as is similarly done with
CR-SE estimation. Then, using information from the residuals of
the independence model estimates, the initial values for the work-
ing correlation matrix are estimated in accordance with the struc-
ture provided by the researcher. The working structure is a blend
of the G and R matrices in HLM (the model is not split into
multiple levels, so the relation of observations within a cluster is a
function of both G and R). Then, using the working correlation
matrix, the covariance matrix of the outcome for individuals within
a cluster is then estimated which is the same V matrix estimated in
HLM. This matrix is then used to update the regression coefficient
and standard error estimates to reflect the dependent relation
between observations. The residuals from this updated model are
then calculated and the process iterates between updating the
working correlation matrix, the covariance matrix for the outcome,
and the model estimates until the regression coefficients no longer
change between iterations whereby the model is said to have
converged to a solution. After this convergence, the cluster-robust
estimator (the same one from CR-SEs) is applied to account for
any potential misspecifications in the covariance structure and the
final regression coefficient and standard error estimates are output,
with the clustering taken into account. The specifics of the algo-
rithm are rather involved and are presented in full detail in Ap-
pendix A for interested readers. A conceptual flowchart of the
algorithm is shown in Figure 1 to help simply the process.

Assumptions, properties, and advantages of GEE. As with
CR-SEs, GEE yield estimates that take the clustering of observa-
tions into account without specifying any random effects in the
model. The GEE algorithm will attempt to accommodate the
covariance that exists between observations due to clustering and
GEE will yield regression coefficient estimates with the standard
error estimates being corrected for the clustered nature of the data.
That is, coefficient estimates with GEE and CR-SE will be almost,
if not, identical if GEE uses an independent working structure but
estimates can be quite different if GEE uses a more complex
working structure, especially with discrete outcomes.

Modeling with GEE requires a smaller quantity of assumptions
compared to HLM because GEEs do not require assumptions
about random effects—five assumptions are made:

1. All relevant predictors are included in the model.

2. Observations between clusters are not related (there is not
a higher level of the hierarchy).

3. Sample size is sufficiently large for asymptotic infer-
ences at the cluster level.
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4. The working correlation matrix is “reasonably close” to
the population structure.

5. Without preprocessing, missing data are assumed to be
MCAR (this issue will be discussed in more detail when
PAMs and HLM are directly compared in a subsequent
section).

With GEE, there is some researcher input required when select-
ing the working correlation structure; however, it does not have to
be properly specified and estimates are robust to fairly large
misspecifications (Ballinger, 2004; Zeger et al., 1988). To expli-
cate more on “grossly misspecified,” Zeger, Liang, and Albert
(1988) found that for an ICC of 0.30 or less, using an independent
working correlation structure (the most basic structure) resulted in
similar estimates to an exchangeable structure,5 so selection of the
working correlation matrix for cross-sectional clustering should
not present too much of an issue for data common in psychology.
For researchers in fields of psychology where higher ICCs are
common, choosing the appropriate working structure is still rather
free from deliberation because an exchangeable working matrix is
usually the most appropriate for cross-sectionally clustered data
regardless of ICC. With higher ICCs, an independent structure
may not be a viable option and thus GEE with an exchangeable
working structure may be preferred to CR-SEs because the esti-
mation will be more efficient meaning that power will be aug-
mented due to increased precision of the estimates (Hanley et al.,
2003).

The main difference between GEE and other PAMs is that GEE
does not use traditional likelihood methods to arrive upon model
estimates. As disadvantages, model comparison procedures based

on the likelihood such as likelihood ratio tests or traditional infor-
mation criteria like AIC or BIC are not available with the tradi-
tional GEE approach nor are model fit measures such as R2 that
can be computed simply with CR-SEs with continuous outcomes.
As an alternative, Pan (2001) developed the Quasi-Likelihood
Information Criteria (QIC) that extends the idea of AIC to GEE
where lower values indicate better fit. Additional criteria, partic-
ularly for adjudicating the appropriate working structure, include
Rotnitzky and Jewell’s criterion (Rotnitzky & Jewell, 1990), cor-
relation information criterion (Hin & Wang, 2009), and Gosho’s
criterion (Gosho, Hamada, & Yoshimura, 2011).

As an advantage of using an alternative estimation scheme, GEE
are far faster and simpler to estimate with discrete outcomes
compared with HLM and the estimation scheme used by GEE does
not depend on whether the outcome is continuous or discrete.6

Thus, GEE are commonly advantageous compared to HLM for
discrete outcomes or for CR-SEs with longitudinal data because
ICC values associated with repeated measures data are often rather
large.7

Comparison of PAMs and HLM

To ensure that estimates are consistent and appropriately incor-
porate the clustered nature of the data, either PAMs or HLM can
be used provided that assumptions of each method are met and that
sample sizes are adequately large. The range of potential research
questions that can be answered using HLM is greater because the
estimation of random effects allows for more nuanced analyses
that can more fully exploit information arising from the multilevel
structure. However, as a result of the inclusion of random effects,
HLM requires a greater quantity of assumptions than PAMs,
although (as noted earlier) HLM is robust to violations of some of
these assumptions under certain conditions. A comparison of what
information is provided by each method is presented in Table 2
and the relative advantages and disadvantages of each method are
listed in Table 3.

Sample Size

Both HLM and PAMs require large sample sizes to produce
consistent estimates that effectively account for clustering. With
PAMs, researchers must be concerned with the sample size at the
cluster level whereas the sample size at both the cluster level and

5 An independent working structure is the most basic structure and
constrains all nondiagonal entries to be 0. An exchangeable structure is also
fairly simple and constrains all nondiagonal entries of the working struc-
ture to be a single value, thus only requiring two total parameters (one for
the diagonal entries and one for the off-diagonal entries). Reverting to the
depression score example, the exchangeable structure would be reasonable
if one considered that people are equally correlated with all other people in
the clinic and there was no underlying reason why certain pairs of people
should be more correlated than other pairs.

6 GEE are typically estimated with quasi-likelihood methods which only
require a mean and variance function. Therefore, the full likelihood func-
tion is not utilized and the lack of a closed form solution is not problematic
for estimation.

7 Although we are not extensively discussing longitudinal data, we
would like to note that GEE can incorporate many working structures for
longitudinal data that are preferable to working independence assumed
with CR-SEs such as autoregressive structures.

Estimate the regression 
coefficients, β, as if data 

were independent 

Specify the working 
correlation matrix, K 

Estimate the parameters 
in K using the  

residuals, e 

Use K to update the 
outcome variable 

covariance matrix, V 

Use V to update 
estimates of β 

After convergence is 
reached, apply CR-SE 

Continue to iterate 
between Step 3, 4, & 5 

until convergence  

STEP 1 

STEP 2 

STEP 3 

STEP 4 

STEP 5 

STEP 6 

Figure 1. Conceptual flowchart of GEE algorithm.
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within-cluster level must be considered with HLM. Recommenda-
tions for how large is “large enough” vary across and within each
method and common suggestions for HLM are 30 clusters of size
30 (Kreft, 1996), at least 20 clusters (Snijders & Bosker, 2011), or
50 clusters of size 20 for cross-level interactions or 100 clusters of
size 10 for interest in variance components (Hox, 1998, 2010 p.
235). For GEE and CR-SE, “large enough” is typically considered
to be a minimum of about 50 clusters (e.g., Angrist & Pischke,
2008; Cameron, Gelbach, & Miller, 2011; Lu et al., 2007; Mancl
& DeRouen, 2001; Morel, Bokossa, & Neerchal, 2003). Because
HLM relies on reasonable samples at the within-cluster level to
estimate the random effects, a simulation by McNeish (2014)
suggested that PAMs are more advantageous with cluster sizes less
than five, particularly for discrete outcomes.

There are also some differences between methods relating to
how individuals are allocated among clusters (i.e., balanced vs.
unbalanced clusters). CR-SEs can be sensitive to data where some
clusters have many more observations than other clusters (Nichols
and Schafer, 2007). Both HLM and GEE are fairly robust to
unbalanced clusters although the GEE algorithm may encounter
convergence issues if there is extreme imbalance (Verbeke,
Fieuws, Molenberghs, & Davidian, 2014). If researchers have
large samples and the clusters widely vary with regard to the
number of observations within each, then HLM may be the best
method to handle these data. This can be common, for instance,
when people are clustered within geographical areas (countries,
states, etc.) because certain areas are larger or more populous than
others. Our third real data example will demonstrate this point.

For each method, many small sample procedures have been
developed. A comprehensive discussion of small sample correc-
tions is outside the scope of this basic commentary. Readers
interested in small sample problems with clustered data are re-
ferred to McNeish and Stapleton (2014) for a nontechnical review
of small samples with HLM, to Lu et al. (2007) or Westgate (2013)

for simulations comparing select small sample corrections for GEE
and CR-SEs, or McNeish and Stapleton (in press) for a compara-
tive simulation of several corrections used in both HLM and GEE.

Specifying Random Effects

Although HLM is robust to misspecification of random effect-
related assumptions under certain conditions, it is still important to
attempt to model this portion of the model correctly because the
random effects are substantively meaningful (otherwise a method
that does not incorporate random effects could more parsimoni-
ously be employed). The general concern is that the variances of
the random effects are used to assess whether the random effects
should be retained in the model. If the random effects have a large
amount of variance, then the effect of the particular predictor on
the outcome is quite different across clusters and the random effect
should be retained in the model to capture this variability.

Although conceptually straightforward, the difficulty in model
selection emerges from the fact that variances are typically con-
strained so that they are bounded below by zero (although, see
Savalei & Kolenikov, 2008 for a discussion of when this is
appropriate and how it affects inference). An inferential test that the
variance of the random effects is equal to zero in the population tests
a value at the boundary of the parameter space. That is, the test
assesses the parameter at the lower bound of the possible values it can
take (if the estimate is constrained to be non-negative as is the default
in most software). The resulting distribution of the test statistic (typ-
ically a Z or �2 statistic) for this hypothesis may not follow the
appropriate test distribution, meaning that inferences made from
such tests may be untrustworthy (Molenberghs & Verbeke, 2004,
2007; Stram & Lee, 1994). Therefore, traditional likelihood ratio
tests for the variance of the random effects may not be �2 distrib-
uted and traditional Z tests are not appropriate since the variance of
the random effects is not symmetric.

Table 2
Comparison of Information Available for Each Method

Ignoring clustering CR-SE GEE HLM

SE based on Information/closed form
(OLS)

Sandwich Sandwich Information

Within-cluster correlations None Exchangeable User-specified Fully modeled
Inference for fixed effects Yes, if no clustering Yes Yes Yes (assuming proper specification)
Inference for variance

parameters N/A N/A N/A Yes, (depending on software�)
Supports cross-classification N/A Yes No Yes

Discrete outcomes
Assumption for point

estimates Independence Independence Working correlation Fully modeled
Interpretation of fixed

effects
Textbook Population-averaged Population-averaged Cluster-Specific

Estimation Based on quasi-likelihood,
only first two moments
are needed, so numeric
integration not
necessary

The likelihood does not have closed
form, requires numeric
integration or approximation

Note. We thank an anonymous reviewer for recommending this table and for suggesting the format and a wealth of the information.
� The popular lme4 package for HLM in R purposefully does not provide standard error estimates for variance components on theoretical grounds because
the sampling distribution is likely to be strongly asymmetric and standard errors are an inadequate measure of uncertainty (Bates, 2009). GEE � generalized
estimating equations; HLM � hierarchical linear model; CR-SE � cluster-robust standard errors.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

121UNNECESSARY UBIQUITY OF HLM



One potential remedy has been to compare the likelihood ratio
test statistic with a mixture �2 distribution, which has been shown
to produce better results in correctly identifying which variance
components to retain in the model (Morrell, 1998). When selecting
structures for the covariance of the random effects and residuals,
methods such as AIC and BIC also have not performed well and in
simulation studies they have been shown to recover the correct
structure less than half of the time (Keselman, Algina, Kowalchuk,
& Wolfinger, 1998; Wolfinger, 1993). It has been suggested that
BIC performs poorly because sample size is included in the cal-
culation; it is not clear if one should use the number of clusters, the
total number of observations, or effective sample size that is a
combination of the two which may not necessarily be the same for
all model parameters (e.g., Newton & McCoach, 2015). This topic
has been recently researched (e.g., Gurka, 2006; Lukočienė, Var-
riale, & Vermunt, 2010; Whittaker & Furlow, 2009) although no
consensus has been reached.

Coefficient Interpretation

In single-level models such as OLS regression, most researchers
are familiar with the general, “textbook” interpretation of the
unstandardized regression coefficients of the general form: for a
one-unit change in the predictor variable X, the outcome variable
Y is expected to change by the value of the regression coefficient
�, holding all other predictors in the model constant. This inter-
pretation is referred to as the population-averaged or marginal
interpretation because it applies to each observation in the dataset
and the effect of predictor variable X on the outcome variable Y

does not differ across observations. More formally, this relation
can be written as E�Y�X� � X� - the expected value of the
outcome conditional on the values of the predictors is equal to the
values of the predictors times the regression coefficients.

With PAMs, the regression coefficients also take a population-
averaged interpretation where E�Y�X� � X� meaning that the
regression coefficients have an identical interpretation as a com-
parable single-level model. Conceptually, this follows from the
nature of the correction applied to account for the clustering: the
corrections make use of the residuals to adjust the standard error
estimates so that the dependence of observations within clusters is
adequately captured. No random effects are estimated for individ-
ual clusters and the model retains a fully fixed-effect specification,
resulting in comparable interpretations to a traditional single-level
model. The same cannot be said from HLM model estimates.

As a result of including the random effects in the model, the
interpretation of the regression coefficients refer to cluster-specific
estimates rather than the population-averaged estimates produced
by single-level models or PAMs. Rather than regression coeffi-
cients having the population-averaged interpretation of a single-
level model, HLM regression coefficients are interpreted as: for a
one-unit change in the predictor variable X, the outcome variable
Y is expected to change by the value of the regression coefficient
�, holding all other predictors in the model constant and given
equal values for the random effects. Notationally, E�Y�X, u� �

X� � Zu. This difference is minimal when the outcome is
continuous (Ballinger, 2004), but, when the outcome is discrete,
the PAM estimates can be quite different and will tend to be

Table 3
Advantages and Disadvantages of HLM, CR-SE, and GEE

Method Advantages Disadvantages

HLM 1. Can directly incorporate substantive multilevel theory
into the model

1. Requires many explicit assumptions and is not always robust to
violations

2. Provides information about specific predictors having
cluster-level variance, allows for cluster-specific
inferences to be made

2. Cluster-specific interpretations and estimation difficult with discrete
outcomes; Likelihood does not have a closed form solution with
discrete outcomes which requires approximation or linearization

3. Can more easily partition the variance into more than
two levels and allows for full decomposition of
cluster-level and within-level effects

3. Difficult to determine if the covariance is modeled correctly

4. Accommodates either longitudinal or cross-
sectionally clustered data well

4. Lacks an overall R2 for continuous outcomes

CR-SE 1. Can output OLS-equivalent R2 and effect sizes while
accounting for clustering

1. Assumes working independence, coefficient estimates may be
affected when the ICC is greater than .30

2. Allow for multiple moderated or blockwise
regression with clustered data

2. Less efficient than GEE for longitudinal analyses where the ICC is
typically high

3. Along with GEE, less affected by small cluster sizes
(Level-1 sample size)

3. Compared with HLM, more affected by small number of clusters

GEE 1. Straightforward estimation with discrete outcomes;
full likelihood not needed

1. Limited ability to compare models or gauge fit

2. Estimates are robust to misspecifications to the
covariance structure of the outcome

2. Compared with CR-SE, fewer advantages for cross-sectionally
clustered data with continuous outcomes such as no R2

3. Along with CR-SE, less affected by small cluster
sizes (Level-1 sample size)

3. Compared to HLM, more affected by small number of clusters and
highly unbalanced clusters

4. No distributional assumptions concomitant with
random effects

4. Cannot fully decompose effects into between-level and within-level
components.

Note. GEE � generalized estimating equations; HLM � hierarchical linear model; CR-SE � cluster-robust standard errors.
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slightly smaller in magnitude as compared with the HLM estimates
because the two methods are estimating regression coefficients
that are representative of truly different quantities (Ghisletta &
Spini, 2004). Furthermore, Carlin, Wolfe, Brown, and Gelman
(2001) have investigated the cluster-specific interpretation of
HLM with discrete outcomes and questioned whether estimates
actually reflect this interpretation and to which quantity the esti-
mates were actually referring. Coefficients for predictors at the
cluster level would not be affected by the population-averaged or
cluster-specific interpretation and their magnitude would be ex-
pected to be the same between methods under ideal circumstances.

If the specific clusters or estimates of the variability of clusters
are relevant to the underlying research question, then an HLM
approach is warranted; however, the differential interpretation of
regression coefficients is one such peril of resorting to HLM solely
to produce estimates that account for clustering. If a researcher
essentially desires a single-level model with estimates that prop-
erly account for clustering, this is not what it is reflected by HLM
estimates and researchers may risk interpreting the coefficients
incorrectly or estimating quantities which do not align with their
research interest. This contrast will be demonstrated in detail in the
second and third real data examples.

Contextual Effects

Kreft, de Leeuw, and Aiken (1995) demonstrated that research-
ers can decompose the effect of a single predictor at each level to
determine whether the effect is the same within-clusters and
between-clusters. This is done by centering the within-cluster
predictor around either the cluster mean or the grand mean and
then including the same predictor at the between-cluster level
(aggregated over the observations within a cluster; Enders &
Tofighi, 2007). If the effect is not the same at different levels of the
hierarchy then there is said to be a contextual or compositional
effect.

Among researchers who advocate the use of HLM, the ability of
HLM to fully decompose effects into between-cluster effects and
within-cluster effects is typically cited as this is not permissible
with OLS regression (Hoffmann & Gavin, 1998). However, if
researchers are not interested in explicitly understanding the vari-
ability of the random effects, then random effects are not required
to estimate the population-averaged contextual effect (Begg &
Parides, 2003; Berkhof & Kampen, 2004; Snijders & Bosker,
2011, p. 106). That is, if the investigation of a contextual effect is
concerned only with inferentially testing if there is an effect in the
population but not necessarily inspecting the effect for specific
cluster, then this same information can be obtained from PAMs
and does not necessitate HLM. PAMs make use of the cluster-
ing variable to correct standard errors and therefore, within-
cluster predictors can be centered just as in HLM and the cluster
mean added as an additional variable into the model and effects
can be similarly decomposed, at least for population-averaged
inference. As noted in previous sections, PAMs will not be able
to partition the variance into within and between components.
PAMs are suitable for simply estimating the population aver-
aged regression coefficient, which this is routinely done in
epidemiological and economic studies (for empirical examples,
see Agerbo, Sterne, & Gunnell, 2007; Huynh, Parker, Harper,
Pamuk, & Schoendorf, 2005; Kontos, Burchinal, Howes, Wis-

seh, & Galinksy, 2002; Marschall, 2004; Petronis & Anthony,
2003).

Missing Data

A common concern in psychological research is missing values
in the data. As a result of the process used to fit the model, GEE
are only implicitly consistent when data are MCAR based on the
classification in Rubin (1976). Standard GEE is not a likelihood
method and therefore likelihood-based corrections cannot be ap-
plied to data that are MAR (Ghisletta & Spini, 2004). While GEE’s
assumption that missing data are MCAR may cause researchers
concern, especially those with longitudinal data because of the
high prevalence of missing data in such designs, Fitzmaurice,
Laird, and Rotnitzky (1993) found that bias of GEE with data that
are MAR was small—relative bias was found to be less than 5%
unless the amount of missing data was quite large (50%) and the
model was misspecified. Furthermore, researchers are not bound to
the MCAR assumption with GEE and methods such as weighted
GEE (Chen, Yi, & Cook, 2010; Lipsitz, Ibrahim, & Zhao, 1999;
Robins, Rotnitzky, & Zhao, 1995) or preprocessing the data with
multiple imputation (Rubin, 1987) are valid ways to accommodate
MAR missingness with GEE, provided that certain assumption
are met (e.g., specifying a proper imputation model; for discus-
sion and comparisons of these methods, readers are referred to
Beunckens, Sotto, and Molenberghs, 2008; Carpenter, Ken-
ward, & Vansteelandt, 2006; Clayton, Spiegelhalter, Dunn, &
Pickles, 1998; Scharfstein, Rotnitzky, & Robins, 1999). Alter-
natively, likelihood GEE-type models can be estimated as well,
which can implicitly handle MAR missingness (see Example
38.12 in the SAS 9.2 Manual, p. 2381). Although we will not go
into detail regarding weighted GEE, we do note that weighted
GEE is a preprogrammed option in the new Proc GEE proce-
dure in SAS 9.4.

On the other hand, HLM is typically estimated with likelihood
based methods and, consequently, estimates are consistent when
the outcome is MAR or MCAR provided that the observed Fisher
information matrix is used (Kenward & Molenberghs, 1998).8 If
the expected Fisher information matrix is used, then HLM
estimates are consistent only under the MCAR missingness
(Verbeke & Molenberghs, 2007). For more detail on the dis-
tinction between observed and expected Fisher information,
interested readers are referred to Enders (2010, pp. 100 –102),
Kenward and Molenberghs (1998), or Savalei (2010). These
studies address missingness only on the outcome variable and
missing covariates can present more of an analytical challenge
(Horton & Laird, 1999, 2001). Mplus is capable of handling
missing data with likelihood methods regardless of which vari-
ables in the model have missing values (Allison, 2012; Enders,
2010).

As a cautionary note, we remind readers that when variables
have missing values, the condition of MAR is not to be assumed

8 As a brief software note, some software programs (e.g., SAS Proc
Mixed) only use likelihood methods to accommodate missing values on the
outcome variable and listwise delete observations that are missing values
on the predictor variables. Researchers with missing data will want to
confirm that their software is handling missing values as intended (see,
Allison, 2012; Enders, 2010).
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by default—if addressed with likelihood methods, then the model
must contain all variables that are related to missingness for this
assumption to be upheld. As such, the requirement that data must
be preprocessed with traditional GEE to accommodate MAR miss-
ingness, while possibly inconvenient at times, is not necessarily a
strict disadvantage. As noted in Enders (2010) “Given that the two
procedures (likelihood methods and multiple imputation) fre-
quently produce very similar results, the choice of technique is
often personal preference” (p. 336).

Illustrative Real Data Examples

Three illustrative example datasets with clustered observations
are used to demonstrate the near equivalence of the regression
coefficients from HLM, CR-SE, and GEE in applied research with
continuous outcomes and their divergence with discrete outcomes.

The first dataset comes from an Institute of Educational Sci-
ences (IES) grant that investigated the efficacy of a reading inter-
vention to assess whether word knowledge and comprehension at
posttest were greater for students receiving a treatment applied at
the classroom level compared to students in the control group
(there were six classrooms in each group). Two examples from this
study will be shown—one for modeling word knowledge and one
for modeling receptive vocabulary. The data used for the example
models include 203 kindergarten students clustered within 12
classrooms in a semiurban, Mid-Atlantic, school district.9 Word
knowledge was measured by the Peabody Picture Vocabulary Test
Growth Score Value (PPVT-GSV) and was predicted by treatment
group status, English language learner (ELL) status, and PPVT-
GSV pretest score. Receptive vocabulary was measured by a
researcher-constructed scale and the model featured the same
predictors except that receptive vocabulary pretest scores were
used instead of PPVT-GSV pretest scores. Our goals for these first
two examples are (a) to show the similarity of estimates between
methods when the outcome is continuous and interest is on infer-
ence regarding the regression coefficients, and (b) to show how
violations of the additional assumptions when using HLM to
account for clustering can adversely affect inference. Assumption
checking with each method is explicitly shown in the word knowl-
edge model to concretize the number of assumptions that must be
tested between methods.

The third example utilizes a second dataset that appeared in
Snijders and Bosker (2011) and originated from Ruiter and Van
Turbergen (2009) which models the probability that 135,508 peo-
ple clustered within 59 countries attend religious services at least
once per week as predicted by sex, age, education level, income,
unemployment, marital status, urbanization, and the Gini Index,
which measures the degree of wealth distribution in a country.
With this example our goals are (a) to show how estimation with
HLM can be trying with discrete outcomes, (b) to demonstrate how
the coefficient estimates will be different between HLM and
PAMs because the distinction between cluster-specific and
population-averaged interpretations is relevant, and (c) to show
how HLM encounters fewer problems with very large disparities
in cluster sizes compared to GEE.

Word Knowledge Model

The unconditional ICC for PPVT-GSV posttest scores was
estimated to be 0.21 and the square root of the design effect

(DEFT) was 2.21, indicating that the clustering of students within
classrooms would have a non-negligible impact on standard error
estimates if clustering were ignored. The statistical models for
HLM (in Raudenbush & Bryk, 2002 notation) and for GEE/CR-SE
are provided below. To facilitate implementing these models in
applied studies, Appendix B provides software code for HLM,
GEE, and CR-SE in SAS, Stata, and Mplus for the word knowl-
edge model.

HLM:
Post-Testij � 	0j � 	1j � ELLij � 	2j � Pre-Testij � rij

	0j � 
00 � 
01 � Treatmentj � u0j

	1j � 
10 � 
11 � Treatmentj

	2j � 
20 � 
21 � Treatmentj

GEE ⁄ CR � SE:
Post-Testij � 	0j � 	1 � ELLij � 	2

� Pre-Testij � 	3 � Treatmentj � 	4

� (Pre-Testij � Treatmentj) � 	4

� (ELLij � Treatmentj) � eij

GEE/CR-SE assumptions. The assumptions of GEE and
CR-SE are fairly similar so the assumption tests will be discussed
together. Assumption 1 of both methods is that all relevant pre-
dictors are included; the word knowledge model was determined
theoretically and model fitting is not of interest, so it will be
assumed that the appropriate predictors are in the model. Assump-
tion 2 requires that observations between clusters (e.g., students in
different classrooms) are not related to one another. The ICC for a
third level (school) was calculated but it was quite small (less than
0.03, DEFT � 1.19) so this assumption appears to be reasonably
upheld. Assumption 3 concerns the sample size at the cluster-
level—although there are only 12 classrooms, the Kauermann-
Carroll correction to the sandwich estimator has been documented
to perform well with as few as 10 clusters (Lu et al., 2007) and will
be used here. Assumption 4 for GEE requires that the working
covariance matrix be “reasonably close” and, for cross-sectional
data, the most logical choice for the working correlation matrix
is either an exchangeable or independent structure. QIC fav-
ored the independent structure to the exchangeable structure
(QICIND � 14,007.33 vs. QICEXCH � 14,087.54). However, Hin,
Carey, and Wang (2007) noted that the Rotnizky-Jewell criterion
(RJC) is more suitable for distinguishing between independent and
exchangeable working structures. For the word knowledge model,
RJCIND � 12141.20, RJCEXCH � 7542.74 as calculated by the
CriteriaWorkCorr SAS macro (Gosho, 2014). Thus, GEE was used
with an exchangeable working structure. There were no missing
values in these data.

HLM assumptions. Similar to GEE/CR-SE, Assumption 1
requires that all relevant predictors be included in the model and is
assumed to hold for the same reason as above. Assumption 2
requires that all relevant random effects be included in the model;
as discussed earlier, there is no straightforward method to test this
assumption. Although not without its disadvantages, a likelihood
ratio test compared to a mixture �2 distribution has been recom-

9 The research reported here was supported by the Institute of Education
Sciences, U.S. Department of Education, through Grant R305A110142 to
the University of Maryland. The opinions expressed are those of the
authors and do not represent views of the Institute or the U.S. Department
of Education.
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mended and will be implemented here through the Covtest state-
ment in SAS Proc Glimmix. A model with random effects for all
within-cluster predictors fits significantly better than a model with
zero random effects (�2 � 77.41, p 	 .001). A model with just
random intercepts did not fit appreciably worse than a model with
three random effects ��2 � 0.11, p � .613�, a model with random
effects for the intercept and pretest (�2 � 0.10, p � .751), or a
model with random effects for the intercepts and ELL (�2 �
0.01, p � .956) and therefore only the random intercept was
included in the model.

Assumptions 3 and 4 address the covariance structures of the
within-cluster residuals and random effects, respectively. Be-
cause the model has only one random effect, Assumption 4
addressing the covariance structure of the random effects is not
a concern. With regard to the within-cluster residual covariance
structure, the cross-sectional nature of the data makes a diag-
onal structure the most reasonable which was confirmed as
other structures (e.g., compound symmetric) did not improve
the fit of the model.

Assumptions 6 and 7 address the normality of the within-cluster
residuals and the random effects, respectively. Figure 2 shows the
histogram of the within-cluster residuals on the left panel and the
histogram of the random effects on the right panel. The left panel
shows a slight negative skew and inferential normality tests such
as Cramer-Von Mises (W2 � 0.11, p � 0.08), and Anderson-
Darling test (A2 � 0.68, p � 0.08) were not significant at the 0.05
level. The right panel is more difficult to interpret because of the
small number of clusters, a pervasive problem in behavioral sci-
ences (Dedrick et al., 2009; McNeish & Stapleton, 2014). With 12
clusters, it is difficult to discern whether the distribution is normal
and inferential tests are not trustworthy because they are highly
underpowered at small sample sizes. There is no drastic violation
of Assumption 7, but it is difficult to be confident that it is upheld.

Assumption 8 requires that the random effects are not corre-
lated with predictors in the model. For discrete predictors with
few categories (treatment status and ELL in this model), the
variance of the random effects can be calculated separately by
group. Table 4 shows the intercept variance estimate when
estimated separately by group for ELL and treatment status. In
Table 4, there appears to be little difference in the variance

components by ELL but the difference between treatment status
may be worrisome. This raises another difficulty in assumption
testing with HLM in that it is difficult to compare the variance
components by group. The scale of the variance components is
not always intuitive and the variance components are often
constrained to be non-negative, so placing a traditional confi-
dence interval around the estimate using its standard error is not
very informative. Furthermore, for the modest sample sizes
often seen in psychology, power will be quite low and, the
standard error estimates of variance components are highly
sensitive to the deviations from normality (Maas & Hox, 2004).
For the continuous predictor (pretest score), this assumption can
be tested by plotting the predictor values against the random
effect estimates. The linear correlation of about .17 resulted in
a p–value slightly below 0.05. Figure 3 shows that there is a
slight quadratic trend and that this assumption may be ques-
tionably upheld— given uncertainty associated with the smaller
sample size, we proceed presuming that this assumption was
reasonably upheld. To address Assumption 9, the small number
of clusters was addressed with a Kenward-Roger correction
which has been demonstrated in the literature to perform well
with as few as 10 clusters (e.g., McNeish & Harring, 2015). The
number of students within each cluster was also in the double
digits which is adequately large (e.g., McNeish, 2014).

Comparison of results. Table 5 compares the estimates
between HLM, CR-SE, and GEE as estimated in SAS 9.3. From
Table 5, it can be seen that the coefficient estimates, their

Table 4
Intercept Variance Estimates by Group

Group Intercept variance Standard error

ELL status
Not ELL 5.78 7.24
ELL 4.34 5.84

Treatment status
Control 2.70 4.68
Treatment 9.34 8.74

Note. ELL � English language learner.

Figure 2. Normality plots for within-cluster residuals (left) and intercept random effects (right). The within-
cluster residuals look approximately normal; the intercept random effects are difficult to interpret because of the
rather small number of clusters.
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standard errors, and their p values are fairly close across meth-
ods. As also mentioned previously, the CR-SE model can also
estimate an R2 that is analogous to OLS which cannot be
similarly done in HLM (although comparable level-specific R2

values can be computed from HLM estimates for models with-
out random slopes). Additionally, although both GEE and
CR-SE use the sandwich estimator to estimate standard errors,
the effect of incorporating the working covariance matrix into
the coefficient estimates in GEE can be seen readily in the
estimates of the ELL and ELL � Treatment estimates: the
inference does not differ at the .05 level (although they would
differ at the 0.10 level and perhaps with a larger sample size)

but the estimates are noticeably different between the two
methods.

The primary interest was determining if the treatment was
effective for increasing word knowledge and, by virtue of the
population of interest, students were nested within classrooms
which had to be accounted for in the model. The clustered
structure was not an inherent research interest, so accounting
for clustering without modeling any cluster-specific random
effects could more simply account for the clustering while
avoiding the assumptions required when modeling with random
effects. The interpretation of the regression coefficients with
GEE or CR-SE are also as clear, if not clearer, than an HLM

Figure 3. Random intercepts versus pretest PPVT-GSV scores with imposed linear trend. The linear Pearson
correlation was .17 which significant at the 0.05 level but not the 0.01 level. The plot of the within-cluster
residual and random intercepts is not shown, but the linear correlation was 
.01 and showed no pattern of
violation.

Table 5
Comparison of Estimates for Word Knowledge Data From HLM, GEE, and CR-SE With SEs in Parenthesis

Effect

HLM GEE CR-SE

Estimate (SE) p-value Estimate (SE) p-value Estimate (SE) p-value

Intercept 123.51 (4.09) — 123.51 (4.29) — 129.78 (3.15) —
Treatment 10.62 (5.74) .09 10.62 (6.14) .11 9.88 (6.34) .15
ELL 2.89 (2.48) .25 2.90 (4.04) .47 
8.21 (5.25) .26
ELL � Treatment 
6.39 (3.35) .06 
6.38 (3.56) .08 
4.70 (2.84) .58
Pretest .87 (.06) 	.01 .86 (.07) 	.01 .73 (.08) 	.01
Pretest � Treatment 
.20 (.08) 	.01 
.20 (.09) .02 
.19 (.08) .03
Intercept variances 85.56 — — — — —
Residual variances 64.07 — — — 115.77 —
Exchangeable correlation — — .51 — — —
R2 — — .81

Note. Pretest was cluster-mean centered. GEE � generalized estimating equations; HLM � hierarchical linear model; CR-SE � cluster-robust standard
errors; ELL � English language learner.
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(including the ability to calculate an R2 more straightforwardly
with CR-SE). More plainly, the clustering mechanism served no
substantive interest, so the clustering was treated as a nuisance
with PAMs which simplified the modeling process. HLM can
still be used to account for clustering, but, if the interest is
primarily on the regression coefficient estimates, there is a
reliance on proper modeling of the covariance structures and an
assumption that the random effects are not correlated with the
predictors; these assumptions are required to obtain estimates of
quantities that the researcher may not care about (i.e., random
effect variance). PAMs obviate the need to properly model
quantities that are not a direct research interest and adhering to
all HLM assumptions will result in the same estimates provided
by PAMs. The next example will demonstrate the ramifications
when assumptions are not upheld and one employs HLM merely
to account for clustering.

Receptive Vocabulary Model

With the receptive vocabulary model, two aspects exacerbated
possible violations of HLM Assumption 5 regarding covariance
between random effects and residuals and Assumption 8 regarding
relations between random effects/residuals and predictor variables.
First, pretest scores were a stronger predictor of posttest scores of
receptive vocabulary than word knowledge. Second, possibly due
to the smaller sample size, the randomization process was not
completely successful and the treatment group was about 0.35 of
a standard deviation higher than the control group at baseline on
the pretest measure. Thus, when fitting the HLM model from
Equation 1, the intercept random effects and the within-cluster
residuals were clearly correlated (left panel of Figure 4) as were
the pretest scores and the intercept random effects (right panel of
Figure 4), violating Assumptions 5 and 8. HLM is not robust to
violations of this assumption (Bates, Castellano, Rabe-Hesketh, &
Skrondal, 2014; Kim & Frees, 2007). As a result, although the
coefficient estimates for HLM (with Kenward-Roger adjustment)
and CR-SE (with Kauermann-Carroll adjustment) are quite close
in Table 6, the standard errors are quite different which changes
the inference decision (using a .05 level of significance) for the
ELL predictor (GEE estimates were fairly close to CR-SE and are
not reported for brevity). In an attempt to allay concerns of these
violations due to baseline imbalance, the data were weighted by
inverse propensity scores10 to obtain more equivalent covariate
values at baseline between the treatment group and the control
group (which initially differed by 0.35 of a standard deviation).
The data were then remodeled with the weights incorporated. As
can be seen in Table 6, the weighted HLM and weighted CR-SE
coefficient estimates are again very similar but the weighted HLM
standard error estimates are much smaller than the unweighted
HLM standard errors and fairly closely mirror both the weighted
and unweighted CR-SE standard error estimates (for which the
assumptions were not violated). Therefore, it can be assumed that
the reweighting for baseline nonequivalence successfully ad-
dressed assumption violation in the HLM estimation.

Importantly, this example shows a potential pitfall of using
HLM to account for clustering when cluster-specific inference or
variance partitioning are not of interest—HLM can certainly ac-
complish the task of estimating standard error estimates that ac-
count for clustering but does so in a more complex manner and

entails a larger number of assumptions. If cluster-specific infer-
ence or variance partitioning are not of interest, GEE or CR-SE can
streamline the process of accounting for clustering by making as
few assumptions as possible.

Religious Attendance Model

The religion data will be used to demonstrate how the choice of
method, as well as the estimation method, can affect results when
the outcome is discrete. In equation form, the models can be
written as,

HLM:

ln	 p(Attendij)
1 � p(Attendij)


� 	0j � 	1j � Femaleij � 	2j

� Incomeij � 	3j � Educationij

�	4j � Singleij � 	5j

� Divorcedij � 	6j � Widowedij
	0j � 
00 � 
01 � Ginij � 
02 � Urbanizationj

� 
03 � College Enrollmentj

�
04 � Years of Educationj � u0j

	1j � 
10 � 
11 � Ginij � 
12 � Years of Educationj � u1j

	2j � 
20 � u2j

	3j � 
30

	4j � 
40

	5j � 
50

	6j � 
60

u � MVN(0, �), � �	�00 0 0
0 �11 0
0 0 �22



GEE/CR–SE:

ln	 p(Attendij)
1 � p(Attendij)


� 	0 � 	1 � Femaleij � 	2 � Incomeij

� 	3 � Educationij � 	4 � Singleij

� 	5 � Divorcedij � 	6 � Widowedij

� 	7 � Ginij � 	8 � Urbanizationj

� 	9 � College Enrollmentj

� 	10 � Years of Educationj

� 	11 � (Femaleij � Years of Educationj)

� 	11 � (Femaleij � Ginij)

The clustering is cross-sectional and the outcome variable is
binary meaning that the residual covariance matrix for HLM
models does not have to be explicitly modeled because the model
does not have an explicit error term (i.e., HLM Assumptions 3 and
6 do not apply with discrete outcomes). The covariance matrix of
the random effects does still need to be explicitly modeled with
HLM with discrete outcomes. Based upon nested mixture �2 tests
available in the Covtest statement in Proc Glimmix (see SAS

10 The propensity score model was built using logistic regression with
treatment status as the outcome and the battery of pretest scores given to
students as well as various demographic information and interactions
thereof. Propensity weights were then stabilized using the method outlined
in Harder, Stuart, and Anthony (2010).
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Usage Note 40724 for more detail), tests suggested to include
random effects for the intercept, female status, and income vari-
ables and the matrix was specified to have a heterogeneous diag-
onal structure. Covariances among the random effects were con-
sidered but their inclusion did not appreciably improve the fit of
the model, so covariances were constrained to zero for the sake of
parsimony. Using an exchangeable working structure with GEE
led to model convergence issues unless the convergence criterion
was heavily relaxed (likely due to the extreme imbalance of the
cluster sizes which ranged from 95 to 7,745; Verbeke et al., 2014);
therefore, an independent working structure was used with GEE.

Comparing estimation times, HLM with PQL took approxi-
mately 8 min to converge, HLM with AGQ took about 18 hr to
converge, and GEE took about 3 s to converge. Computational
times can be reduced by relaxing convergence criterion. For in-
stance, Mplus uses a default convergence criterion of 1E-3 for this
model (compared with 1E-8 in Proc Glimmix) and reached con-
vergence in 4.25 hr with roughly the same parameter estimates. If
the same convergence criteria are used, then computational times

between programs are comparable. Readers should note that com-
putational times are high with this example because of the vast
sample size; more reasonably sized data sets that are typical in
psychology will not feature such computational overhead.

Table 7 compares estimates from an HLM estimated with PQL,
HLM estimated with AGQ and 10 integration points (as recom-
mended by Pinheiro & Bates, 1995; Pinheiro & Chao, 2006), and
GEE with an independent working correlation matrix. HLM with
a Laplace Approximation yielded estimates and p values that were
equal to the second decimal point with HLM estimated by AGQ.
Similarly, GEE with an independent working matrix yielded esti-
mates and p values that were equal to the second decimal point
with CR-SEs. We therefore only presented one of each related
method for brevity. To facilitate implementing these models in
applied studies, Appendix C provides software code for all three
HLM methods, GEE, and CR-SE in SAS, Stata, and Mplus for
estimation methods that are available in each respective program.

Unlike the first example, the outcome in these models is discrete
meaning that the estimates between HLM and GEE are expected to

Table 6
Comparison of HLM and CR-SE Estimates for Receptive Vocabulary Where HLM Assumptions are Seriously Violated

Effect

HLM CR-SE IPW HLM IPW CR-SE

Estimate (SE) p-value Estimate (SE) p-value Estimate (SE) p-value Estimate (SE) p-value

Intercept 14.35 (.82) — 14.34 (.52) — 14.31 (.52) — 14.30 (.50) —
Treatment 5.63 (1.15) 	.01 5.62 (.93) 	.01 4.95 (.79) 	.01 4.97 (.84) 	.01
ELL 
2.10 (1.03) .07 
2.21 (.73) 	.01 
1.99 (.80) .01 
1.98 (.81) .01
ELL � Treatment 
.95 (1.43) .52 
.88 (1.11) .43 
.10 (1.09) .93 
.10 (1.09) .93
Pretest .50 (.16) 	.01 .48 (.13) 	.01 .59 (.08) 	.01 .59 (.09) 	.01
Pretest � Treatment .33 (.16) .04 .32 (.13) .01 .27 (.13) .04 .25 (.12) .04
Intercept variance .90 — — — .34 — — —
Residual variance 12.63 — 12.35 — 12.51 — 12.96 —
R2 — — .67 — — — .61 —

Note. GEE � generalized estimating equations; HLM � hierarchical linear model; CR-SE � cluster-robust standard errors; ELL � English language
learner; IPW � inverse propensity weighted; pretest was cluster-mean centered.

Figure 4. Random intercepts versus within-cluster residuals (left) and random intercepts versus receptive
vocabulary pretest scores (right), each with an imposed loess line. The linear Pearson correlation between
random intercepts and the within-cluster residual was .14; the Pearson correlation between pretest scores and
random intercepts was 
.24. Both were statistically significant. If assumptions were met, the loess lines should
be approximately horizontal through zero.
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be incongruent because they are representative of different quan-
tities. That is, the GEE coefficient estimates are interpreted as the
change in the log-odds of attending religious services holding all
other predictors constant, yielding a population-averaged interpre-
tation. On the other hand, the estimates for the HLM models are
interpreted as the change in the log-odds of attending religious
services holding all other predictors and the random effects con-
stant. This results in a cluster-specific interpretation. With the
exception of the urbanization and single predictors, inferences
based on p values aligned between HLM and GEE even though the
values of the coefficients were much different due to the different
interpretations of the coefficients. Additionally, it can be seen in
Table 7 that the estimates between the different HLM estimation
methods do not produce congruent results. The Female � Gini
cross-level interaction is marginally significant with PQL (p �
.035) but is not significant with AGQ (p � .169). Even under this
near ideal case of an extremely large sample size, PQL and AGQ
are noticeably different. The Laplace Approximation was compa-
rable with AGQ for these data; however, this is not always the
expectation. As noted previously, the Laplace Approximation
tends to be less accurate with smaller sample sizes at either level,
neither of which were a concern with these data.

Despite the difference in the interpretation, there are heuristic
approximations that can be used to convert cluster-specific coef-
ficients to population averaged coefficients. Molenberghs and Ver-
beke (2004) provided one for a random intercepts logistic model
and Mroz and Zayats (2008) discussed how this can be done for
logistic model with multiple random effects (pp. 409–410). From
Mroz and Zayats (2008), to obtain population-averaged estimates
from cluster-specific estimates, multiply the cluster-specific infer-

ences by � 2 � 3
2 � 3 � �q�0

Q gqq


 the variance of the logistic function

divided by the logistic variance plus the sum of the random effects
variances. In the religion data, this quantity is equal to 0.82 and
multiplying the AGQ HLM coefficients by 0.82 yields the GEE
coefficients in almost every case (except for the marital status

predictors, which might suggest a possible misspecification; the
model did not include which religion individuals practice, e.g.,
which would have a clear effect on whether people attend religious
services).

Discussion

Although HLM has historically been closely associated to clus-
tered data in psychology, population-averaged methods (PAMs)
can also be used to analyze clustered data without the additional
step of explicitly modeling the random effects or covariance struc-
tures which also allows researchers to bypass the assumptions
inherent with random effects that are required in HLM but not in
PAMs. Researchers are encouraged to determine if their research
question and interests truly call for cluster-specific inferences or a
substantive reason to partition the residual variance between lev-
els. If the clustering within the data is seen as a facet that merely
needs to be accommodated to yield appropriate estimates or is a
byproduct of the data collection and one simply wants to ensure
that the estimates adequately account for the clustered structure,
PAMs offer researchers an alternative to HLM that similarly
performs inferential tests on regression coefficients without having
to partake in HLM-specific model building steps such as fitting the
random effects and the covariance structures for the random ef-
fects under the assumption that these structures have been properly
specified. More pragmatically, if researchers are fitting a random
intercepts model to “account for clustering,” this can more simply
(and sometimes more appropriately) be done with PAMs.

The use of CR-SE, in particular, offers researchers far simpler
computations of familiar and often desirable metrics like R2 or
effect sizes with continuous outcomes. That is, the statistical
correction is made to the standard errors of regression coefficients
but quantities involved in R2 and effect size calculations such as
the sums of squares are identical to a single-level model because
the model contains only fixed effects. Objectively speaking, HLM
can still model clustered data even if the clustering is more of a

Table 7
Comparison of Estimates for Religion Data With HLM With Three Different Estimation Methods

HLM-PQL HLM-AGQ-10 GEE

Effect Estimate (SE) p-value Estimate (SE) p-value Estimate (SE) p-value

Intercept 
1.74 (.171) 	.001 
1.81 (.163) 	.001 
1.46 (.148) 	.001
Female .49 (.015) 	.001 .46 (.044) 	.001 .39 (.040) 	.001
Gini (mean centered) .04 (.020) .046 .04 (.018) .048 .04 (.016) .026
Female � Gini (mean centered) 	.01 (.002) .035 .01 (.005) .169 
.00 (.004) .745
College enrollment (mean centered) 
.02 (.011) .124 
.02 (.011) .075 
.01 (.012) .372
Urbanization (mean centered) 
.01 (.011) .440 
.01 (.011) .478 
.02 (.009) .031
Years of education (mean centered) 
.01 (.004) .009 
.02 (.005) 	.001 
.05 (.022) .023
Female � Yrs. of Education (mean centered) 
.05 (.006) 	.001 
.04 (.006) 	.001 
.06 (.015) 	.001
Income 
.08 (.008) 	.001 
.09 (.018) 	.001 
.07 (.025) .004

Married Reference Reference Reference

Single 
.28 (.019) 	.001 
.28 (.019) 	.001 
.08 (.075) .270
Divorced 
.52 (.036) 	.001 
.53 (.036) 	.001 
.63 (.080) 	.001
Widowed .48 (.026) 	.001 .46 (.027) 	.001 .29 (.081) .001

Intercept variance 1.687 — 1.493 — — —
Female variance .092 — .090 — — —
Income variance .014 — .014 — — —

Note. HLM � hierarchical linear model; PQL � penalized quasi-likelihood; AGQ � Adaptive Gaussian Quadrature; GEE � generalized estimating
equations.
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nuisance rather than a substantive interest, particularly with con-
tinuous outcomes. However, researchers subscribing to this phi-
losophy are making many more assumptions of their data and
trusting that they are modeling all covariance structures correctly,
both of which can be obviated with PAMs. Furthermore, the
limited amount of space for research articles often means that
discussion of and inspection of the wealth of HLM modeling
assumptions is not included in published studies (Dedrick et al.,
2009). This can make it difficult to assess research from a meth-
odological perspective because model estimates may not be trust-
worthy in the event that one of the many assumptions is potentially
violated.

Based on the syllabus review conducted, the strong preference
for HLM in psychology (and behavioral sciences in general)
appears to be at least partially driven by tradition as reflected by
what is taught to graduate students in the classroom. Instructors of
multilevel, longitudinal, and correlated data analysis courses in the
behavioral sciences are especially encouraged to integrate some
discussion of PAMs into their courses. This article is not suggest-
ing that PAMs are superior to HLM, that HLM is an inferior
method for modeling clustered data, or that behavioral science
should strive to emulate biomedical or econometric applications
where PAMs are much more common. Rather, we are trying to
argue that nonmethodological researchers often strive for the sim-
plest analysis that can adequately handle their data structure and
the methodological literature has even gone so far to note an
aversion to more advanced methodology in empirical studies
(Sharpe, 2013). Although HLM is undoubtedly useful in many
contexts and affords many advantages that can address a broader
range of research questions, researchers who instinctively model
clustered data with HLM are making fairly rigid assumptions of
their data in order to obtain estimates that are not always of interest
to their research question. As an exception to the methodological
norm discussed in Sharpe (2013), researchers who resort to HLM
as an almost knee-jerk reaction to clustered data are often using a
more complicated and strict method that makes more assumptions
than may be necessitated by their data and cluster-specific esti-
mates may be more difficult to interpret or perhaps even mis-
aligned with researchers’ expectations if the outcome is discrete.

In fact, it is commonplace for psychology articles to report using
HLM without reporting the variance component estimates or other
vital pieces of information that provide a rationale for using HLM
over PAMs (Dedrick et al., 2009). To exemplify this point, using
only the results on the first page of a Google Scholar search for
“HLM,” since 2010, in a single arbitrarily selected flagship psy-
chology journal (Psychological Science), five of the 10 studies on
the first page of results at the time of this writing used straight-
forward, conditionally univariate HLM models and did not report
nor discuss the random effects, partitioning of the variance be-
tween levels, or covariance structure(s) that were used for the
random effects or the residuals (Gebauer, Sedikides, & Neberich,
2012; Job, Dweck, & Walton, 2010; Sherman, Haidt, & Clore,
2012; Silberzahn & Uhlmann, 2013; Ziegler et al., 2010) and one
study discussed these model components in the statistical analysis
section but did not report them in the results (Lopez, Hofmann,
Wagner, Kelley, & Heatherton, 2014). Furthermore, two of these
studies had discrete outcomes (Job et al., 2010; Lopez et al., 2014)
meaning that a cluster-specific model was fit without any mention
of the modeling components that make the model cluster-specific,

a meaningful decision that affects the magnitude and interpretation
of the coefficients.

We are not claiming that these studies were done incorrectly,
that their conclusions are faulty, or that there are any methodolog-
ical deficiencies in Psychological Science nor are we trying to
criticize the reporting practices contained with these studies as we
can certainly appreciate the strict length restrictions encountered in
substantive journals. Rather, we suspect that this information was
not reported because it was not a concern to the research question
and we are trying to emphasize that random effects and cluster-
specific inference are at the core of HLM, not simply estimating
standard errors that account for clustering. When the latter is the
interest, PAMs allow for simplified model interpretations, avoid
random effect distributional assumptions, are more straightforward
to estimate with discrete outcomes, and are more straightforward
to implement in the context of these papers which seemed to be
solely interested in estimating and interpreting the regression co-
efficients while accounting for clustering.11

Broader Implications for the Field

Although the ubiquity of HLM may seem fairly harmless, the
implications for current and future research are not innocuous.
From a pedagogical perspective, teaching HLM as the default
method to handle clustered observations can make statistics more
unapproachable to substantive researchers than it is already per-
ceived to be and can unnecessarily complicate otherwise straight-
forward analyses. Although HLM is appropriate in certain circum-
stances, it is one of the more complex methods to handle clustering
and models are far less intuitive, more difficult to build, and are
more difficult to interpret than PAMs. Although the statistical
theory behind PAMs is likely not any more approachable than
HLM, PAMs provide a more intuitive conceptual transition from
independent data to clustered data and offer substantive research-
ers tools to address a wealth of research questions that arise in
psychological research that may align more closely with their
research interests. More plainly, material in clustered data courses
in psychology, anecdotally, tends to focus more so on what HLM
is rather than contexts when it should be used.

We hope that this article has provided some context for why
PAMs should be more relevant to psychologists and to researchers
in the behavioral sciences broadly. As we hope to have shown in
this article, PAMs can play an integral role in analyzing clustered
data in and future research on their properties and performance in
behavioral science-specific contexts could be quite helpful.

11 As one anonymous reviewer pointed out, it would be fairer to also
provide examples of similar transgressions with PAMs. However, this
elicits one of our primary motivations for this article—one cannot easily
obtain examples of PAMs used in psychological research and a similar
random review would require us to inspect biomedical or economics
journals, which are outside the scope of Psychological Methods.
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Appendix A

Technical Details for Each Method

Cluster-Robust Standard Errors

We will outline how CR-SEs account for clustering for contin-
uous outcomes using OLS because CR-SEs are most advantageous
for continuous outcomes but readers should note that CR-SEs can
similarly be applied to models estimated with maximum likelihood
with only minor changes in the computation.

As noted in the main text, Y � X� � � for Y where � � Ni.i.d.

�0, �2�. The standard errors of the regression coefficients are taken from
the square root of the diagonal elements of variance of Var��̂� which is
most generally calculated by Var��̂� � �XTX��1XT��TX�XTX��1 (e.g.,
Wooldridge, 2003). Assuming independently and identically dis-
tributed residuals, ��T can be summarized by the average squared
residuals �2 � �n � p��1��T which results in a diagonal matrix �2I
where �2 is a single estimate of the residual variance. Through the
assumption of independently and identically distributed residuals, the
estimate of Var��̂� then simplifies to ��2��XTX��1XTX�XTX��1, and
the first multiplication simplifies because �XTX��1XTX � I, leaving
Var��̂� � �2�XTX��1 if the assumptions are upheld. However, when
the assumption of independently and identically distributed resid-
uals is violated, then summarizing ��T with �n � p��1��T is not
appropriate and results in estimates of Var��̂� being too small
because covariances between observations are constrained to zero,
meaning that the standard errors are underestimated because terms
from the most general formula should not cancel, and, conse-
quently, Type I errors are inflated (Cameron & Miller, 2015).

When data are dependent through clustering, the residuals of ob-
servations within clusters are likely related meaning that the assump-
tion of independently and identically distributed residuals is unlikely
to be upheld (e.g., Raudenbush & Bryk, 2002). Robust standard errors
(perhaps more appropriately called heteroskedasdicity corrected co-
variance or empirical estimators) address this problem by replacing
the average of squared residuals �n � p��1��T with the squared

residual ��T which does not require diagonal elements to be identical.
After this substitution, ��T can no longer be summarized by �2I and the
variance of the regression coefficients no longer simplifies and thus
reverts to its original formulation as Var��̂� � �XTX��1XT��TX
�XTX��1(Huber, 1967; White, 1980).

This substitution only addresses violations to the residuals being
identically distributed; to address violations of the residuals being
independently distributed, XT��TX must be calculated for each
cluster (rather than each individual) and then summed across all
clusters, �j�1

J Xj
T�j�j

TXj. This quantity is then pre and post mul-
tiplied by �XTX��1 to obtain the standard errors that account for
clustering (i.e., cluster-robust standard errors) such that
VarCR��̂� � �XTX��1�j�1

J �Xj
T�j�j

TXj��XTX��1 (White, 1984).
This calculation is robust to dependence within clusters but still
requires that observations between clusters be independent.

With discrete outcomes, the process is similar except that the
calculation of the residuals differs. With continuous outcomes, the
residuals are straightforwardly calculated by the difference be-
tween the observed and the predicted values, � � Y � X�̂. With
discrete outcomes, the relation differs because the conditional
mean of the outcome variable distribution must be nonlinearly
related to predictor variables through a nonlinear link function,
E�Y�X� � � � g�1�X�� where g (·) is the nonlinear link function
(e.g., a logistic function for binary outcomes; more detail is pro-
vided in the GEE section that follows). Due to the nonlinear link
function, deviance residuals are often used instead of the tradi-
tional raw residuals. Deviance residuals measure the contribution
of each unit to the model deviance (
2 � log-likelihood) and are

calculated by ei
D � �2�log�1 � eXi�̂� � Xi�̂�, if yi � 1

�2�log�1 � eXi�̂��, if yi � 0
for logistic

models. �D would then replace � in the formulas presented earlier
in this section.

(Appendices continue)
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Generalized Estimating Equations (GEE)

GEE is an algorithmic method to estimate generalized linear
models which, as briefly alluded to in the previous section,
relate the conditional mean of an outcome variable distribution
E�Yj�Xj� � �j to a linear predictor X� through a link function g (·)
(McCullagh & Nelder, 1989; McCulloch & Searle, 2001). In
behavioral sciences, common link functions are the identity func-
tion for normally distributed outcomes, g(�j) � �j, the logit link
for binary outcomes, g(�j) � log��j ⁄ �1 � �j��, or the log link for
count outcomes, g(�j) � log(�j). The variance of Yj is then
specified as Var(Yj) � (�j)� where � is a possibly unknown
scale parameter (� � 1 for binary and Poisson responses) and
(�j) is a known variance function ((�j) � 1 for normally
distributed outcomes, �j�1 � �j� for binary outcomes, and �j for
Poisson distributed outcomes).

Broadly speaking, estimating equations specify how parameters
in a model are estimated with salient examples including ordinary
least squares and maximum likelihood. When data are independent
(i.e., clustering is not meaningful), the maximum likelihood esti-
mate of the vector of regression coefficients � in a generalized
linear model can be obtained using independence estimating equa-
tions. Where �̂ is estimated with score equations such that
�j�1

J �Xj
TAjSj� � 0 where Xj is an mj � p design matrix for the jth

cluster, Aj � diag��Var��j1�, . . . ,Var��jmj
�� for mj the number of

within-cluster units in cluster j, and Sj � Yj � �j��� for Yj is an
mj � 1 vector of outcomes for the jth cluster and �j��� the
conditional mean of the outcome which is based up the regression
coefficients (see, e.g., Fitzmaurice, 1995; Liang & Zeger, 1986).
As seen by the diagonal structure of Aj, this assumes that covari-
ance is directly calculable from the model and observations within
clusters are not related, which introduces bias into the standard
errors estimates of the regression coefficients if data are meaning-
fully clustered. As in HLM, this issue can be addressed by directly
modeling the source of clustering. However, Liang and Zeger
(1986) generalized independence estimating equation (hence the
name “generalized estimating equations”) to handle situations in
which specifying a modeling for the correlation of observations is
not desired. Rather, the covariance matrix is updated as a function
of unknown parameters.

Liang and Zeger (1986) define generalized estimating equations
for regression coefficients �̂ such that �j�1

J Dj
TVj

�1Sj � 0 where

Dj � Xj
TAj �

��j

��
and Vj � �̂Aj

½Kj���Aj
½ for �̂ a scale parameter

estimated by �̂ � 1
N�p�j�1

J �i�1
mj eij

2, and Kj is an mj�mj working
correlation matrix comprised of unknown parameters � that esti-
mate the correlation of observations within clusters rather than it
being explicitly modeled. The structure of Kj is specified by the
researcher a priori but its elements are updated algorithmically. For
cross-sectionally clustered data, an exchangeable structure is typ-

ically suitable12 where Corr�Yij,Ykj� � �1 i�k
� i�k

meaning that

an arbitrary within-cluster observation has equal correlation with
all other observations within the same cluster. The value of � is
conceptually similar to the traditional ICC as calculated with HLM
in an unconditional model (Wu, Crespi, & Wong, 2012).

As mentioned previously, GEE iteratively updates the parame-
ters in the working structure, �. First, �̂ is estimated assuming
independence. Then, Kj(�) is estimated from the errors from the
model that assumes independence. The estimation of Kj(�) de-
pends of the working structure specified by the researcher. For an
exchangeable structure that is typical with cross-sectional cluster-

ing (Horton & Lipsitz, 1999), �̂ � 1
�̂�N* � p��j�1

J �i�k eijeik

where N* � 0.5�j�1
J mj�mj � 1�. Because GEE does not require

the full likelihood, with discrete outcomes, deviance residuals
cannot be used so Pearson residuals (ep) are used instead where

eij
P �

yij � �̂ij

Var��̂ij�
. Once a value(s) for �̂ is obtained, then Vj can be

calculated by Vj � �̂Aj
½Kj���Aj

½. �̂ is then updated by �̂r�1 �

�̂r � ��j�1
J Dj

TVj
�1Dj��1��j�1

J Dj
TVj

�1Sj� where r is the index for
the iteration. When r � 1, �̂j houses the coefficient estimates under
the independence assumption. For readers within a greater interest
in longitudinal data, an AR(1) autoregressive structure is a com-
mon choice for the working correlation structure such that Corr
�Yij, Yi�t,j� � �t for t � 0, 1, 2, . . . , mj � i for the I the total
number of repeated measures. With an AR(1) working structure,

�̂ � 1
�̂�J1 � p��j�1

J �i�mj
eijei�1,j where J1 � �j�1

J �mj � 1�.

12 Ballinger (2004) states that “[when] there is no logical ordering for
observations within a cluster (such as when data are clustered within
subject or within an organizational unit but not necessarily collected over
time), an exchangeable correlation structure should be used” (p. 133).

(Appendices continue)
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Once the iterative process has successfully converged (as-
suming convergence can be reached; convergence may be more
difficult to obtain if the clusters are very unbalanced or if the
working structure is grossly incorrect such that the resulting
estimating form a nonpositive definite matrix; Shults, Ratcliffe,
& Leonard, 2007), Var (�̂) is calculated using a cluster-robust
method similar to the one outlined above in the CR-SE section.

The naïve estimator of Var (�̂) that ignores clustering is calculated
by ��j�1

J Dj
TVj

�1Dj��1(e.g., McCullagh & Nelder, 1989). Similar to
CR-SEs, the naïve estimator “sandwiches” a quantity that takes the
clustering into the account. In GEE, the middle term is formulated by
�j�1

J Dj
TVj

�1SjSj
TVj

�1Dj making the GEE estimate of Var(�̂)
equal to VarGEE��̂� � ��j�1

J Dj
TVj

�1Dj��1��j�1
J Dj

TVj
�1SjSj

TVj
�1Dj�

��j�1
J Dj

TVj
�1Dj��1.

Appendix B

Software Code for Word Knowledge Example

HLM

SAS Proc Mixed

proc mixed data=Reading;
model post=Pre|Trt ELL|Trt/solution;
random int/ sub=Teacher; run;

Stata xtmixed

xtmixed Post Pre Trt Trt_Pre Trt_ELL ||Teacher:,
reml cov(unstruct)

Mplus

VARIABLE:
cluster = Teacher;
within = Pre Trt_Pre Trt_ELL; between = Trt;

ANALYSIS:
Estimator=ML; type=Twolevel Random;

MODEL:
%within%
Post ON Pre Trt_Pre Trt_ELL;

%between%
Post ON Trt; Post;

GEE

SAS Proc Genmod

proc genmod data=Reading;
class teacher;
model Post=Pre|Trt ELL|Trt;
repeated subject=Teacher/ type=exch;run;

(Appendices continue)
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Stata xtgee

xtgee Post Pre Trt Trt_Pre Trt_ELL,
fam(gaus)
link(iden)
i(Teacher)
corr(exc)

Mplus- not available (http://www.statmodel.com/discussion/messages/11/635.html?1114217498)

CR-SE

SAS Proc Glimmix

proc glimmix data=Reading empirical;
class teacher;
model Post= Pre|Trt ELL|Trt/ solution;
random _residual_ /sub=teacher; run;

Stata regress

regress Post Pre Trt Trt_Pre Trt_ELL, cluster(Teacher)

Mplus

VARIABLE:
cluster = teacher;

ANALYSIS:
estimator=MLR; type= complex;

MODEL:
Post ON Post Pre Trt Trt_Pre Trt_ELL;

Appendix C

Software Code for Religion Example

HLM—Adaptive Gaussian Quadrature, 10 Points

SAS Proc Glimmix

proc glimmix data=Religion method=quad(qpoints=10);
class country;
model ReligiousAttendance= Female|GINI College Urban Educ|Female Income
Single Divorced Widowed/solution link=logit dist=b;
random int female income/ subject=country;run;

Stata xtmixed

xtmelogit ReligiousAttendance Female GINI Female*GINI College Urban Educ Educ*Female
Income Single Divorced Widowed || Country: Female Income, intpoints(10)

(Appendices continue)
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Mplus

VARIABLE:
categorical = ReligiousAttendance; cluster = Country;
within = Female Income Single Divorce Widowed Educ Fe_FINI F_Educ;
between = GINI College Urban;

ANALYSIS:
Estimator=ML;
type=Twolevel Random; Algorithm=Integration; Integration=Standard (10);

MODEL:
%within%
ReligiousAttendance ON Single Divorce Widowed Educ Fe_FINI F_Educ;
b1 | ReligiousAttendance ON Female; b2 | ReligiousAttendance ON Income;

%between%
ReligiousAttendance ON GINI College Urban;
b1;b2; ReligiousAttendance;

HLM—Laplace

SAS Proc Glimmix

proc glimmix data=Religion method=laplace;
class country;
model ReligiousAttendance= Female|GINI College Urban Educ|Female Income
Single Divorced Widowed/solution link=logit dist=b;
random int female income/subject=country;run;

Stata xtmixed

xtmelogit ReligiousAttendance Female GINI Female*GINI College Urban Educ Educ*Female
Income Single Divorced Widowed || Country: Female Income, laplace

Mplus — not available (Bauer & Sterba, 2011)

HLM—PQL

SAS Proc Glimmix

proc glimmix data=Religion;
class country;
model ReligiousAttendance= Female|GINI College Urban Educ|Female Income
Single Divorced Widowed/solution link=logit dist=b;
random int female income/ subject=country; run;

Stata — not available (Kim, Choi, & Emery, 2013 p. 174).
Mplus — not available (Bauer & Sterba, 2011)

(Appendices continue)
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GEE

SAS Proc Genmod

proc genmod data=Religion descending;
class country;
model ReligiousAttendance= Female|GINI College Urban Educ|Female Income
Single Divorced Widowed/link=logit dist=b;
repeated subject=country/type=ind;run;

Stata xtgee

xtgee ReligiousAttendance Female GINI Female*GINI College Urban Educ Educ*Female Income
Single Divorced Widowed,
fam(bi)
link(logit)
i(Country)
corr(ind)

Mplus - not available (http://www.statmodel.com/discussion/messages/11/635.html?1114217498)

CR-SE

SAS Proc Glimmix

proc glimmix data=Religion empirical;
class country;
model ReligiousAttendance= Female|GINI College Urban Educ|Female Income
Single Divorced Widowed /Solution link=logit dist=b;
random _residual_/subject=country; run;

Stata logit

logit ReligiousAttendance Female GINI Female*GINI College Urban Educ Educ*Female Income
Single Divorced Widowed, cluster(Country)

Mplus

VARIABLE:
categorical = ReligiousAttendance; cluster = Country;

ANALYSIS:
estimator=MLR; type= complex;

MODEL:
ReligiousAttendance ON
Female Income GINI Urban College Single Divorce Widowed Educ Fe_FINI F_Educ;
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