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Chapter 1

Linear Regression with One
Independent Variable

1.1 General information about regression

• Regression analysis is a statistical tool that utilizes the relation between two or more quantitative
variables so that one variable can predicted from another.

• The variable we are trying to predict is called the response or dependent variable. The variable
predicting this is called the explanatory or independent variable.

• Relationships between variables can be either functional or statistical. A functional relationship is
exact, while a statistical relationship has error associated with it.

• Regression analysis serves three purposes: Description, Control, and Prediction.

• Whenever reporting results, be sure to use at least four decimal places.

1.2 Simple linear regression model

• The simple linear regression function is

Yi = β0 + β1Xi + εi. (1.1)

In this model β0, β1, and εi are parameters and Yi and Xi are measured values. This is called a “first
order model” because it is linear in both the parameters and the independent variable.

• For every level of X, there is a probability distribution for Y having mean E(Yi) = β0 + β1Xi and
variance σ2(Yi) = σ2, where σ2 is the variance of the entire population.

• β0 is called the intercept and β1 is called the slope of the regression line.

• Data for the regression analysis may be either observational or experimental. Observational data is
simply recorded from naturally occurring phenomena while experimental data is the result of some
manipulation by the experimenter.

1.3 Estimated regression function

• The estimated regression function is
Yi = b0 + b1Xi. (1.2)
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• We calculate b0 and b1 using the methods of least squares. This chooses estimates that minimizes the
sum of squared errors. These estimates can be calculated as

b1 =
∑

(Xi − X̄)(Yi − Ȳ )∑
(Xi − X̄)2

=
∑

XiYi −
∑

Xi

∑
Yi

n

∑
Xi

2 − (
∑

Xi)2

n

(1.3)

and
b0 = Ȳ − b1X̄ =

1
n

(∑
Yi − b1

∑
Xi

)
. (1.4)

• Under the conditions of the regression model given above, the least squares estimates are unbiased and
have minimum variance among all unbiased linear estimators. This means that the estimates get us
as close to the true unknown parameter values as we can get.

• E(Y ) is referred to as the mean response or the “expected value” of Y . It is the center of the probability
distribution of Y .

• The least squares regression line always passes through the point (X̄, Ȳ ).

• The predicted or fitted values of the regression equation calculated as

Ŷi = b0 + b1Xi. (1.5)

• Residuals are the difference between the response and the fitted value,

ei = Yi − Ŷi. (1.6)

We often examine the distribution of the residuals to check the fit of our model. Some general properties
of the residuals are:

◦ ∑
ei = 0

◦ ∑
e2
i is minimum when using least squares estimates

◦ ∑
Yi =

∑
Ŷi

◦ ∑
Xiei = 0

◦ ∑
Ŷiei = 0

• The sample variance s2 estimates the population variance σ2. This estimate is calculated as

s2 =
∑

(Yi − Ŷi)2

n− 2
, (1.7)

and is also referred to as the Mean Square Error (MSE).

• Note that estimated values are always represented by English letters while parameter values are always
represented by Greek letters.

1.4 Normal error regression model

• The normal error regression model is

Yi = β0 + β1Xi + εi, (1.8)

where i = 1 . . . n are the trials of the experiment, Yi is the observed response on trial i, Xi is the level
of the independent variable on trial i, β0 and β1 are parameters, and the residuals εi are all normally
distributed with a mean of 0 and a variance of σ2.

• In this model Yi and Xi are known values while β0, β1, and εi are parameters.

• The additional assumptions in this model allow us to draw inferences from our data. This means that
we can test our parameter estimates and build confidence intervals.
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Chapter 2

Inferences in Regression Analysis

2.1 General information about statistical inferences

• Every point estimate has a sampling distribution that describes the behavior of that estimate. By
knowing the sampling distribution you know the center and the spread (expected value and variance,
respectively) of the distribution of the estimate. Recall that a sampling distribution is also a probability
distribution.

• We use two different ways to estimate parameters: point estimates and confidence intervals.

2.2 Hypothesis tests

• Specifically we are often interested in building hypothesis tests pitting a null hypothesis versus an
alternative hypothesis. One hypothesis test commonly performed in simple linear regression is

H0 : β1 = 0
Ha : β1 6= 0.

(2.1)

• There are four possible results to a hypothesis test. You can:

1. Fail to reject the null when the null is true (correct).

2. Reject the null when the alternative is true (correct).

3. Reject the null when the null is true (Type I error).

4. Fail to reject the null when the alternative is true (Type II error).

• The seven general steps to presenting hypothesis tests are:

1. State the parameters of interest

2. State the null hypothesis

3. State the alternative hypothesis

4. State the test statistic and its distribution

5. State the rejection region

6. Perform necessary calculations

7. State your conclusion
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2.3 Test statistics

• Knowing the sampling distribution of an estimate allows us to form test statistics and to make inferences
about the corresponding population parameter.

• The general form of a test statistic is

point estimate− E(point estimate)
standard deviation of point estimate

, (2.2)

where E(point estimate) is the expected value of our point estimate under H0.

2.4 Determining the significance of a test statistic

• Once we calculate a test statistic we can talk about how likely the results were due to chance if we
know the underlying distribution.

• The “p-value” of our test statistic is a measure of how likely our observed results are just due to chance.

• To get the p-value we must know the distribution from which our test statistic was drawn. Typically
this involves knowing the general form of the distribution (t, F, etc.) and any specific parameters (such
as the degrees of freedom).

• Once we know the distribution we look up our calculated test statistic in the appropriate table. If the
specific value of our calculated test statistic is not in the table we use the p-value associated with the
largest test statistic that is smaller than the one we calculated. This gives us a conservative estimate.
Similarly, if there is no table with the exact degrees of freedom that we have in our statistic we use
the table with largest degrees of freedom that is less than the degrees of freedom associated with our
calculated statistic.

• Before calculating our test statistic we establish a “significance level” α. We reject the null hypothesis
if we obtain a p-value less than α and fail to reject the null when we obtain a p-value greater than
α. The significance level is the probability that we make a Type I error. Many fields use a standard
α = .05.

2.5 Testing β1 and β0

• To test whether there is a linear relationship between two variables we can perform a hypothesis test
on the slope parameter in the corresponding simple linear regression model.

• β0 is the expected value when X = 0. If X cannot take on the value 0 then β0 has no meaningful
interpretation.

• When testing β1:

◦ Point estimate = least squares estimate b1

◦ E(point estimate) = β1 under H0 (This is typically = 0)
◦ Standard deviation =

√
σ2{b1}

• We estimate σ2{b1} using the following equation:

s2{b1} =
MSE from model∑

(Xi − X̄)2
(2.3)

• The resulting test statistic

t∗ =
b1 − β1

s{b1} (2.4)

follows a t distribution with n− 2 degrees of freedom.
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• To make tests about the intercept β0 we use

◦ Point estimate = least squares estimate b0

◦ E(point estimate) = β0 under H0

◦ Standard deviation =
√

σ2{b0}
• We estimate σ2{b0} using the following equation:

s2{b0} = MSE
(

1
n

+
X̄2

∑
(Xi − X̄)2

)
(2.5)

• The resulting test statistic

t∗ =
b0 − β0

s{b0} (2.6)

follows a t distribution with n− 2 degrees of freedom.

2.6 Violations of normality

• If our Y ’s are truly normally distributed then we can be confident about our estimates of β0 and β1.

• If our Y ’s are approximately normal then our estimates are approximately correct.

• If our Y ’s are distinctly not normal then our estimates are likely to be incorrect, but they will approach
the true parameters as we increase our sample size.

2.7 Confidence intervals

• Point estimates tell us about the central tendency of a distribution while confidence intervals tell us
about both the central tendency and the spread of a distribution.

• The general form of a confidence interval is

point estimate± (critical value)(standard deviation of point estimate) (2.7)

• We often generate a 1− α confidence interval for β1:

b1 ± (t1−α
2 ,n−2)s{b1}. (2.8)

• When constructing confidence intervals it’s important to remember to divide your significance level by
2 when determining your critical value. This is because half of your probability is going into each side.

• You can perform significance tests using confidence intervals. If your interval contains the value of the
parameter under the null hypothesis you fail to reject the null. If the value under the null hypothesis
falls outside of your confidence interval then you reject the null.

2.8 Predicting new observations

• Once we have calculated a regression equation we can predict a new observation at Xh by substituting
in this value and calculating

Ŷh = b0 + b1Xh. (2.9)

• It inappropriate to predict new values when Xh is outside the range of X’s used to build the regression
equation. This is called extrapolation.
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• We can build several different types of intervals around Ŷh since we know its sampling distribution. In
each case we have (n− 2) degrees of freedom and the (1− α) prediction interval takes on the form

Ŷh ± (t1−α
2 ,n−2)s{pred}, (2.10)

where n is the number of observations to build the regression equation and s{pred} is the standard
deviation of our prediction.

• The exact value of s{pred} depends on what we are specifically trying to predict. It is made up of the
variability we have in our estimate and the variability we have in what we’re trying to predict. This
last part is different in each case described below.

◦ To predict the mean response at Xh we use

s{pred} =

√
MSE

(
1
n

+
(Xh − X̄)2∑
(Xi − X̄)2

)
, (2.11)

◦ To predict a single new observation we use

s{pred} =

√
MSE

(
1 +

1
n

+
(Xh − X̄)2∑
(Xi − X̄)2

)
, (2.12)

◦ To predict the mean of m new observations we use

s{pred} =

√
MSE

(
1
m

+
1
n

+
(Xh − X̄)2∑
(Xi − X̄)2

)
, (2.13)

◦ These equations are related. Equation 2.11 is equal to equation 2.13 where m = ∞. Similarly,
equation 2.12 is equal to equation 2.13 where m = 1.

2.9 ANOVA approach to regression

• Our observed variable Y will always have some variability associated with it. We can break this into
the variability related to our predictor and the variability unrelated to our predictor. This is called an
“Analysis of Variance.”

• SSTO = Total sums of squares =
∑

(Yi − Ȳ )2 is the total variability in Y . It has n − 1 degrees of
freedom associated with it.

• SSR = Regression sums of squares =
∑

(Ŷi− Ȳ )2 is the variability in Y accounted for by our regression
model. Since we are using one predictor (X) it has 1 degree of freedom associated with it.

• SSE = Error sums of squares =
∑

(Yi − Ŷi)2 =
∑

ei
2 is the variability in Y that is not accounted for

by our regression model. It has n− 2 degrees of freedom associated with it.

• These are all related because
SSTO = SSR + SSE (2.14)

and
dftotal = dfmodel + dferror (2.15)

• The MSR (regression mean square) is equal to the SSR divided by its degrees of freedom. Similarly,
the MSE (error mean square) is equal to the SSE divided by its degrees of freedom.
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• All of this is summarized in the following ANOVA table:

Source of variation SS df MS

Model (R)
∑

(Ŷi − Ȳ )2 1 SSR
1

Error (E)
∑

(Yi − Ŷi)2 n− 2 SSE
n−2

Total
∑

(Yi − Ȳ )2 n− 1

2.10 The General Linear Test

• We can use the information from the ANOVA table to perform a general linear test of the slope
parameter. In this we basically try to see if a “full” model predicts significantly more variation in our
dependent variable than a “reduced” model.

• The full model is the model corresponding to your alternative hypothesis while your reduced model is
the model corresponding to your null hypothesis.

• The basic procedure is to fit both your full and your reduced model and then record the SSE and DF
from each. You then calculate the following test statistic:

F ∗ =

SSEreduced−SSEfull

dfreduced−dffull

SSEfull

dffull

, (2.16)

which follows an F distribution with (dffull − dfreduced) numerator and dffull denominator degrees of
freedom.

• When testing the slope in simple linear regression, F ∗ is equal to SSTO−SSE
MSE = MSR

MSE .

• F1,n−2,1−α = (tn−2,1−α)2.

2.11 Descriptive measures

• These measure the degree of association between X and Y .

• Coefficient of determination: r2

◦ This is the effect of X in reducing the variation in Y .

◦ r2 = SSR
SSTO

◦ 0 ≤ r2 ≤ 1

• Coefficient of correlation: r

◦ This is a measure of the linear association between X and Y .

◦ r = ±
√

r2, where the sign indicates the slope direction

◦ −1 ≤ r ≤ 1
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2.12 Using SAS

• Something like the following commands typically appear at the top of any SAS program you run:

options ls=72;
title1 ’Computer program 1’;
data one;
infile ’mydata.dat’;

input Y X;

The first line formats the output for a letter-sized page. The second line puts a title at the top of each
page. The third establishes the name of the SAS data set you are working on as “one”. The fourth
line tells the computer that you want to read in some data from a text file called “mydata.dat”. The
fifth tells SAS that the first column in the dataset contains the variable “Y” and the second column
contains the variable “X”. Each column in the text file is separated by one or more spaces.

• To print the contents of a dataset use the following code:

proc print data=one;
var X Y;

where the variables after the var statement are the ones you want to see. You can omit the var line
altogether if you want to see all the variables in the dataset.

• To plot one variable against another use the following code:

proc plot data=one;
plot Y*X = ’A’;

In this case variable Y will appear on the Y-axis, variable X will appear on the X-axis, and each point
will be marked by the letter “A”. If you substitute the following for the second line:

plot Y*X;

then SAS will mark each point with a character corresponding to how many times that observation is
repeated.

You can have SAS do multiple plots within the same proc plot statement by listing multiple combi-
nations on the plot line:

plot Y*X=’A’ Y*Z=’B’ A*B;

as long as all of the variables are in the same dataset. Each plot will produce its own graph. If you
want them printed on the same axes you must also enter the /overlay switch on the plot line:

plot Y*X Z*X /overlay;

• To have SAS generate a least-square regression line predicting Y by X you would use the following
code:

proc reg data=one;
model Y = X;
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This the output from this code would provide you with the regression coefficients and an ANOVA table.
The coefficients appear at the bottom of the output: b0 would be located across from “INTERCEPT”
and b1 would be across from “X.”

The predicted values and residuals may be obtained by adding the switch /p to the model statement
as in:

model Y = X /p;

You can also store the residuals and the predicted values in a new dataset (along with all of the other
variables) by adding the following line after the model statement:

output out=two p=yhat r=resids;

where “two” is the name of the new dataset, “yhat” is the name of the variable to contain the predicted
values, and “resids” is the name of the variable to contain the residuals.

To have SAS generate prediction intervals for a single new observation at each level of your predictor
you add the line

print cli;

after the model statement. To have SAS generate prediction intervals for the mean response at each
level of your predictor you add the line

print clm;

after the model statement. You can have both in the same reg procedure.

If you want prediction intervals at levels not in your data set the easiest way is to modify your data
set so that the levels are present. You add an entry with the value you want in the predictor variable
column and then a “.” in the response variable column. The entry will not affect how SAS builds the
regression equation, but SAS will calculate a predicted value for it.

• To have SAS calculate the correlations between variables you use the following code:

proc corr;
var X Y Z;

The result is a matrix containing the correlations of the listed variables with each other.

• You can insert comments into your program that will be ignored by SAS. You place a /* at the
beginning and a */ at the end of the comment. When searching for errors you might find it useful to
comment out parts of your program and run it one piece at a time.

• Always remember to include a

run;

statement at the end of your program. Otherwise SAS may not execute all of your commands.
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Chapter 3

Diagnostic and Remedial Measures I

3.1 General information about diagnostics

• It is important that we make sure that our data fits the assumptions of the normal error regression
model. Violations of the assumptions lessen the validity of our hypothesis tests.

• Typical violations of the simple linear regression model are:

1. Regression function is not linear

2. Error terms do not have constant variance

3. Error terms are not independent

4. One or more observations are outliers

5. Error terms are not normally distributed

6. One or more important predictors have been omitted from the model

3.2 Examining the distribution of the residuals

• We don’t want to examine the raw Yi’s because they are dependent on the Xi’s. Therefore we examine
the ei’s.

• We will often examine the standardized residuals instead because they are easier to interpret. Stan-
dardized residuals are calculated by the following formula:

ei
∗ =

ei√
MSE

. (3.1)

• To test whether the residuals are normally distributed we can examine a normal probability plot. This
is a plot of the residuals against the normal order statistic. Plots from a normal distribution will look
approximately like straight lines.

If your Yi’s are non-normal you should transform them into normal data.

• To test whether the variance is constant across the error terms we plot the residuals against Ŷi. The
graph should look like a random scattering.

If the variance is not constant we should either transform Y or use weighted least squares estimators.
If we transform Y we may also have to transform X to keep the same basic relationship.

• To test whether the error terms are independent we plot the residuals against potential variables not
included in the model. The graph should look like a random scattering.

If our terms are not independent we should add the appropriate terms to our model to account for the
dependence.
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• We should also check for the possibility that the passage of time might have influenced our results. We
should therefore plot our residuals versus time to see if there is any dependency.

3.3 Checking for a linear relationship

• To see if there is a linear relationship between X and Y you can examine a graph of Yi versus Xi. We
would expect the data to look roughly linear, though with error. If the graph appears to have any
systematic non-linear component we would suspect a non-linear relationship.

• You can also examine a graph of ei versus Xi. In this case we would expect the graph to look completely
random. Any sort of systematic variation would be an indicator of a non-linear relationship.

• If there is evidence of a non-linear relationship and the variance is not constant then we want to
transform our Yi’s. If there is evidence of a non-linear relationship but the variance is constant then
we want to transform our Xi’s.

• The exact nature of the transformation would depend on the observed type of non-linearity. Common
transformations are logarithms and square roots.

3.4 Outliers

• To test for outliers we plot X against Y or X against the residuals. You can also check univariate
plots of X and Y individually. There should not be any points that look like they are far away from
the others.

• We should check any outlying data points to make sure that they are not the result of a typing error.
True outliers should be dropped from the analysis.

• Dealing with outliers will be discussed more thoroughly in later chapters.

3.5 Lack of Fit Test

• In general, this tests whether a categorical model fits the data significantly better than a linear model.

• The assumptions of the test are that the Yi’s are independent, normally distributed, and have constant
variance.

• In order to do a lack of fit test you need to have repeated observations at one or more levels of X.

• We perform the following hypothesis test:

H0 : Yi = β0 + β1Xi

Ha : Yi 6= β0 + β1Xi
(3.2)

Our null hypothesis is a linear model while our alternative hypothesis is a categorical model. The
categorical model uses the mean response at each level of X to predict Y . This model will always fit
the data better than the linear model because the linear model has the additional constraint that its
predicted values must all fall on the same line. When performing this test you typically hope to show
that the categorical model fits no better than the linear model. This test is a little different than the
others we’ve done because we don’t want to reject the null.

• We perform a general linear test. Our full model is

Yij = µj + εij i = 1 . . . nj

j = 1 . . . c
(3.3)
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where c is the number of different levels of X, nj is the number of observations at level Xj , and µj is
the expected value of Yij .

From our full model we calculate

SSEfull =
∑

j

∑

i

(Yij − µ̂j)2, (3.4)

where
µ̂j =

1
c

∑

i

Yi = Ȳj . (3.5)

There are n− c degrees of freedom associated with the full model.

• Our reduced model is a simple linear regression, namely that

Yij = β0 + β1Xi + εij i = 1 . . . nj

j = 1 . . . c
(3.6)

The SSEreduced is the standard SSE from our model, equal to
∑

j

∑

i

[Yij − (b0 + b1Xi)]2. (3.7)

There are n− 2 degrees of freedom associated with the reduced model.

• When performing a lack of fit test we often talk about two specific components of our variability. The
sum of squares from pure error (SSPE) measures the variability within each level of X. The sum of
squares from lack of fit (SSLF) measures the non-linear variability in our data. These are defined as
follows:

SSLF = SSEreduced − SSEfull =
∑

j

∑

i

(Ȳj − Ŷij)2 (3.8)

SSPE = SSEfull =
∑

j

∑

i

(Yij − Ȳj)2. (3.9)

The SSPE has n− c degrees of freedom associated with it while the SSLF has c− 2 degrees of freedom
associated with it.

• These components are related because

SSEreduced = SSPE + SSLF. (3.10)

and
dfSSEreduced

= dfSSPE + dfSSLF. (3.11)

• From this we can construct a more detailed ANOVA table:

Source of variation SS df MS

Model (R)
∑∑

(Ŷij − Ȳ )2 1 SSR
1

Error (E)
∑

(Yij − Ŷij)2 n− 2 SSE
n−2

LF
∑ ∑

(Ȳj − Ŷij)2 c− 2 SSLF
c−2

PE
∑ ∑

(Yij − Ȳj)2 n− c SSPE
n−c

Total
∑

(Yij − Ȳ )2 n− 1
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• We calculate the following test statistic:

F ∗ =

SSEreduced−SSEfull

dfreduced−dffull

SSEfull

dffull

=
SSE - SSPE

c−2

SSPE
n−c

=
SSLF

c−2

SSPE
n−c

(3.12)

which follows an F distribution with c− 2 numerator and n− c denominator degrees of freedom.

• Our test statistic is a measure of how much our data deviate from a simple linear model. We must
reject our linear model if it is statistically significant.

3.6 Using SAS

• To get boxplots and stem and leaf graphs of a variable you use the plot option of proc univariate:

proc univariate plot;
var X;

• There are two different ways to generate a normal probability plot. One way is to use the plot option
of proc univariate:

proc univariate plot;
var Y;

While this is the easiest method, the plot is small and difficult to read. The following code will generate
a full-sized normal probability plot:

proc rank data=one normal=blom;
var Y;
ranks ynorm;
proc plot;
plot Y*ynorm;

• SAS refers to standardized residuals as “studentized residuals.” You can store these in an output data
set using the following code:

proc reg data=one;
model Y=X;
output out=two student=sresid;

• To transform data in SAS all you need to do is create a new variable as a function of the old one,
and then perform your analysis with the new variable. You must create the variable in the data step,
which means that it must be done ahead of any procedure statements. For example, to do a log base
10 transform on your Y you would use the code:

ytrans = log10(Y);
proc reg data=one;

model ytrans = X;

SAS contains funcions for performing square roots, logarithms, exponentials, and just about any other
sort of transformation you might possibly want.
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Chapter 4

Simultaneous Inferences and Other
Topics

4.1 General information about simultaneous inferences

• When you perform multiple hypothesis tests on the same set of data you inadvertently inflate your
chances of getting a type I error. For example, if you perform two tests each at a .05 significance level,
your overall chance of having a false positive are actually (1− .952) = .0975, which is greater than the
.05 we expect.

• We therefore establish a “family confidence coefficient” α, specifying how certain we want to be that
none of our results are due to chance. We modify the significance levels of our individual tests so that
put together our total probability of getting a type I error is less than this value.

4.2 Joint estimates of β0 and β1

• Our tests of β0 and β1 are drawn from the same data, so we should present a family confidence
coefficient when discussing our results.

• We describe the Bonferroni method, although there are others available. In this method we divide α
by the number of tests we’re performing to get the significance level for each individual test.

• For example, we would generate the following confidence intervals for β0 and β1 using a family confi-
dence coefficient of α:

β0 : b0 ± (tn−2,1−α
4
)s{b0}

β1 : b1 ± (tn−2,1−α
4
)s{b1} (4.1)

While we usually select our critical value at (1− α
2 ) in confidence intervals (because it is a two-tailed

test), we use (1− α
4 ) here because we are estimating two parameters simultaneously.

4.3 Regression through the origin

• Sometimes we have a theoretically meaningful (0,0) point in our data. For example, the gross profit
of a company that produces no product would have to be zero. In this case we can build a regression
model with β0 set to zero:

Yi = β1Xi + εi, (4.2)

where i = 1 . . . n.
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• The least squares estimate of β1 in this model is

b1 =
∑

XiYi∑
Xi

2 . (4.3)

• The residuals from this model are not guaranteed to sum to zero.

• We have one more degree of freedom in this model than in the simple linear regression model because
we don’t need to estimate β0. Our estimate of the variance (MSE) is therefore

s2 =
∑

(Yi − Ŷi)2

n− 1
. (4.4)

Similarly, dferror = n− 1.

4.4 Measurement error

• Error with respect to our Yi’s is accommodated by our model, so measurement error with regard to
the response variable is not problematic as long as it is random. It does, however, reduce the power of
our tests.

• Error with respect to our Xi’s, however, is problematic. It can cause our error terms to be correlated
with our explanatory variables which violates the assumptions of our model. In this case the least-
squares estimates are no longer unbiased.

4.5 Inverse prediction

• We have already learned how to predict Y from X. Sometimes, however, we might want to predict X
from Y . We can calculate an estimate with the following equation:

X̂h =
Yh − b0

b1
, (4.5)

which has a variance of

s2{predX} =
MSE
b1

2

(
1 +

1
n

+
(X̂h − X̄)2∑
(Xi − X̄)2

)
. (4.6)

• While this can be used for informative purposes, it should not be used to fill in missing data. That
requires more complicated procedures.

4.6 Choosing X levels

• The variance of our parameter estimates are all divided by
∑

(Xi− X̄)2. To get more precise estimates
we would want to maximize this. So you want to have a wide range to your X’s to have precise
parameter estimates.

• It is generally recommended that you use equal spacing between X levels.

• When attempting to predict Y at a single value of X, the variance of our predicted value related to
(Xh − X̄)2. To get more precise estimate we would want to minimize this. So you want to sample all
of your points at Xh if you want a precise estimate of Ŷh.
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Chapter 5

Matrix Approach to Simple Linear
Regression

5.1 General information about matrices

• A matrix is a collection of numbers organized into rows and columns. Rows go horizontally across
while columns go vertically down. The following is an example of a matrix:

M
3×4

=




2 7 6 12
9 5 1 11
4 3 8 10


 . (5.1)

The dimension of the matrix (the numbers in the subscript) describes the number of rows and columns.

• Non-matrix numbers (the type we deal with every day) are called scalars. Matrix variables are generally
typed as capital, bold-faced letters, such as A to distinguish them from scalars. When writing matrix
equations by hand, the name of the matrix is usually written over a tilde, such as A

~
.

• A single value inside the matrix is called an element. Elements are generally referred to by the lowercase
letter of the matrix, with subscripts indicating the element’s position. For example:

A
3×3

=




a11 a12 a13

a21 a22 a23

a31 a32 a33


 . (5.2)

• We use matrices because they allow us to represent complicated calculations with very simple notation.
Any moderately advanced discussion of regression typically uses matrix notation.

5.2 Special types of matrices

• A square matrix is a matrix with the same number of rows and columns:



5 −2 2
9 −4 3
11 5 12


 . (5.3)

• A column vector is a matrix with exactly one column:



7
2
−8


 . (5.4)
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• A row vector is a matrix with exactly one row:

( 1 3 4 ) . (5.5)

• A symmetric matrix is a square matrix that reflects along the diagonal. This means that the element
in row i column j is the same as the element in row j column i:




1 2 3
2 5 7
3 7 6


 . (5.6)

• A diagonal matrix is a square matrix that has 0’s everywhere except on the diagonal:



22 0 0
0 −2 0
0 0 −6


 . (5.7)

• An identity matrix is a square matrix with 1’s on the diagonal and 0’s everywhere else:

I
3×3

=




1 0 0
0 1 0
0 0 1


 (5.8)

Multiplying a matrix by the identity always gives you back the original matrix. Note that we always
use I to represent an identity matrix.

• A unity matrix is a square matrix where every element equal to 1:

J
3×3

=




1 1 1
1 1 1
1 1 1


 (5.9)

We can also have unity row vectors and unity column vectors. We use unity matrices for summing.
Note that we always use J to represent a unity matrix and 1 to represent a unity vector.

• A zero matrix is a square matrix where every element is 0:

0
3×3

=




0 0 0
0 0 0
0 0 0


 (5.10)

Note that we always use 0 to represent a zero matrix.

5.3 Basic matrix operations

• Two matrices are considered equal if they are equal in dimension and if all their corresponding elements
are equal.

• To transpose a matrix you switch the rows and the columns. For example, the transpose of M in
equation 5.1 above would be

M
4×3

′ =




2 9 4
7 5 3
6 1 8
12 11 10


 . (5.11)

The transpose of a symmetric matrix is the same as the original matrix.
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• To add two matrices you simply add together the corresponding elements of each matrix. You can
only add matricies with the same dimension. For example,

(
5 12
10 18

)
+

(
6 9
4 15

)
=

(
11 21
14 33

)
. (5.12)

• To subtract one matrix from another you subtract the corresponding element from the second matrix
from the element of the first matrix. Like addition, you can only subtract a matrix from one of the
same dimension. For example,

(
5 12
10 18

)
−

(
6 9
4 15

)
=

(−1 3
6 3

)
. (5.13)

• You can multiply a matrix by a scalar. To obtain the result you just multiply each element in the
matrix by the scalar. For example:

5
(−2 5

11 3

)
=

(−10 25
55 15

)
. (5.14)

Similarly, you can factor a scalar out of a matrix.

5.4 Matrix multiplication

• You can multiply two matrices together, but only under certain conditions. The number of columns
in the first matrix has to be equal to the number of rows in the second matrix. The resulting matrix
will have the same number of rows as the first matrix and the same number of columns as the second
matrix. For example:

A
2×3

B
3×4

= C
2×4

. (5.15)

Basically, the two dimensions on the inside have to be the same to multiply matrices (3 = 3) and the
resulting matrix has the dimensions on the outside (2× 4).

• An important fact to remember is that matrix multiplication is not commutative: (AB) 6= (BA). You
always need to keep track of which matrix is on the left and which is on the right.

• Always multiply from left to right, unless parentheses indicate otherwise.

• Each element of the product matrix is calculated by taking the cross product of a row of the first
matrix with a column of the second matrix. Consider the following example:

(
3 6 1
4 10 12

) 


8 11
7 2
5 9


 =

(
3(8) + 6(7) + 1(5) 3(11) + 6(2) + 1(9)

4(8) + 10(7) + 12(5) 4(11) + 10(2) + 12(9)

)
=

(
71 54
162 172

)
(5.16)

Basically, to calculate the element in cell ij of the resulting matrix you multiply the elements in row
i of the first matrix with the corresponding elements of column j of the second matrix and then add
the products.

5.5 Linear dependence

• Two variables are linearly dependent if one can be written as a linear function of the other. For
example, if x = 4y then x and y are linearly dependent. If no linear function exists between two
variables then they are linearly independent.
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• We are often interested in determining whether the columns of a matrix are linearly dependent. Let c
be the column vectors composing a matrix. If any set of λ’s exists (where at least one λ is nonzero)
such that

λ1c1 + λ2c2 + · · ·+ λici = 0, (5.17)

(where there are i columns) then we say that the columns are linearly dependent. If equation 5.17 can
be satisfied it means that at least one column of the matrix can be written as a linear function of the
others. If no set of λ’s exists satisfying equation 5.17 then your columns are linearlly independent.

• The rank of a matrix is the maximum number of linearly independent columns. If all the columns in
a matrix are linearly independent then we say that the matrix is full rank.

5.6 Inverting a matrix

• If we have a square matrix S, then its inverse S−1 is a matrix such that

SS−1 = I. (5.18)

• The inverse of a matrix always has the same dimensions as the original matrix.

• You cannot calculate the inverse of a matrix that is not full rank.

• There is a simple procedure to calculate the inverse of a 2× 2 matrix. If

A
2×2

=
(

a b
c d

)
, (5.19)

then

A
2×2

−1 =
1

ad− cb

(
d −b
−c a

)
. (5.20)

• The quantity ad− cb is called the determinant. If the matrix is not full rank this is equal to 0.

• There are ways to calculate more complicated inverses by hand, but people typically just have com-
puters do the work.

5.7 Simple linear regression model in matrix terms

• We can represent our simple linear model and its least squares estimates in matrix notation.

• Consider our model
Yi = β0 + β1Xi + εi, (5.21)

where i = 1 . . . n. We can define the following matrices using different parts of this model:

Y
n×1

=




Y1

Y2
...

Yn


 X

n×2
=




1 X1

1 X2
...

...
1 Xn


 β

2×1
=

(
β0

β1

)
ε

n×1
=




ε1
ε2
...

εn


 (5.22)

• We can write the simple linear regression model in terms of these matrices:

Y
n×1

= X
n×2

β
2×1

+ ε
n×1

. (5.23)

• The matrix equation for the least squares estimates is

b
2×1

= (X′X)−1X′Y. (5.24)
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• The matrix equation for the predicted values is

Ŷ
n×1

= Xb = X(X′X)−1X′Y. (5.25)

To simplify this we define the hat matrix H such that

H
n×n

= X(X′X)−1X′ (5.26)

and
Ŷ = HY. (5.27)

We shall see later that there are some important properties of the hat matrix.

• The matrix equation for the residuals is

e
n×1

= Y − Ŷ = (I−H)Y. (5.28)

5.8 Covariance matrices

• Whenever you are working with more than one random variable at the same time you can consider the
covariances between the variables.

• The covariance between two variables is a measure of how much the varibles tend to be high and low at
the same time. It is related to the correlation between the variables. The covariance between variables
Y1 and Y2 would be represented as

σ{Y1, Y2} = σ{Y2, Y1}. (5.29)

• We can display the covariances between a set of variables with a variance-covariance matrix. This
matrix is always symmetric. For example, if we had k different variables we could build the following
matrix: 



σ1
2 σ12 · · · σ1k

σ12 σ2
2 · · · σ2k

...
...

...
σ1k σ2k · · · σk

2


 . (5.30)

5.9 Using SAS

• SAS does have an operating system for performing matrix computations called IML. However, we will
not need to perform any complex matrix operations for this class so it will not be discussed in detail.

• You can get X′X, X′Y, and Y′Y when you use proc reg by adding a print xpx statement:

proc reg;
model Y=X;
print xpx;

You can get (X′X)−1, the parameter estimates, and the SSE when you use proc reg by adding a
print i statement:

proc reg;
model Y=X;
print i;

If you want both you can include them in the same print statement.
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Chapter 6

Multiple Regression I

6.1 General information about multiple regression

• We use multiple regression when we want to relate the variation in our dependent variable to several
different independent variables.

• The simple linear regression model (which we’ve used up to this point) can be done using multiple
regression methodology.

6.2 First order model with two independent variables

• The general form of this model is

Yi = β0 + β1Xi1 + β2Xi2 + εi (6.1)

where i = 1 . . . n and the εi’s are normally distributed with a mean of 0 and a variance of σ2.

• We interpret the parameters in this model as follows:

◦ β0 : If X1 and X2 have meaningful zero points then β0 is the mean response at X1 = 0 and
X2 = 0. Otherwise there is no useful interpretation.

◦ β1 : This is the change in the mean response per unit increase in X1 when X2 is held constant.

◦ β2 : This is the change in the mean response per unit increase in X2 when X1 is held constant.

• β1 and β2 are called partial regression coefficients.

• If X1 and X2 are independent then they are called additive effects.

6.3 The General linear model (GLM)

• This is the generalization of the first-order model with two predictor variables. In this model we can
have as many predictors as we like.

• The general form of this model is

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βp−1Xi,p−1 + εi, (6.2)

where i = 1 . . . n and εi follows a normal distribution with mean 0 and variance σ2.

• This model can be used for many different types of regression. For example, you can:
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◦ Have qualitative variables, where the variable codes the observation as being in a particular
category. You can then test how this categorization predicts some response variable. This will be
discussed in detail in chapter 11.

◦ Perform polynomial regression, where your response variable is related to some power of your
predictor. You could then explain quadratic, cubic, and other such relationships. This will be
discussed in detail in chapter 7.

◦ Consider interactions between variables. In this case one of your predictors is actually the product
of two other variables in your model. This lets you see if the effect of one predictor is dependent
on the level of another. This will be discussed in detail in chapter 7.

6.4 The matrix form of the GLM

• The GLM can be expressed in matrix terms:

Y
n×1

= X
n×p

β
p×1

+ ε
n×1

, (6.3)

where

Y
n×1

=




Y1

Y2
...

Yn


 X

n×p
=




1 X11 X12 · · · X1,p−1

1 X21 X22 · · · X2,p−1

...
...

...
...

1 Xn1 Xn2 · · · Xn,p−1




β
p×1

=




β0

β1
...

βp−1


 ε

n×1
=




ε1
ε2
...

εn


 .

(6.4)

• As in simple linear regression, the least squares estimates may be calculated as

b = (X′X)−1 X′Y, (6.5)

where

b =




b0

b1
...

bp−1


 . (6.6)

• Using this information you can write an ANOVA table:

Source of variation SS df MS

Model (R) b′X′Y − 1
nY′JY p− 1 SSR

p−1

Error (E) e′e = Y′Y − b′X′Y n− p SSE
n−p

Total Y′Y − 1
nY′JY n− 1

6.5 Statistical inferences

• You can test whether there is a significant relationship between your response variable and any of your
predictors:

H0 : β1 = β2 = · · · = βp−1 = 0
Ha : at least one βk 6= 0.

(6.7)
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Note that you are not testing β0 because it is not associated with a predictor variable. You perform a
general linear test decide between these hypotheses. You calculate

F ∗ =
MSR
MSE

, (6.8)

which follows an F distribution with p− 1 numerator and n− p denominator degrees of freedom.

• You can calculate a coefficient of multiple determination for your model:

R2 =
SSR

SSTO
= 1− SSE

SSTO
. (6.9)

This is the proportion of the variation in Y that can be explained by your set of predictors. A large
R2 does not necessarily mean that you have a good model. Adding parameters always increases R2,
but might not increase its significance. Also, your regression function was designed to work with your
data set, so your R2 could be inflated. You should therefore be cautious until you’ve replicated your
findings.

• You can also test each βk individually:

H0 : βk = 0
Ha : βk 6= 0.

(6.10)

To do this you calculate

t∗ =
bk − βk

s{bk} =
bk

s{bk} , (6.11)

which follows a t distribution with n−p degrees of freedom. You can obtain s{bk} by taking the square
root of the kth diagonal element of

MSE (X′X)−1, (6.12)

which is the variance/covariance matrix of your model s2{b}.
Remember to use a family confidence coefficient if you decide to perform several of these test simulta-
neously.

• You can also build prediction intervals for new observations. You first must define the vector

Xh =




Xh1

Xh2
...

Xh,p−1


 , (6.13)

where Xh1 . . . Xh,p−1 is the set of values at which you want to predict Y . You may then calculate your
predicted value

Ŷh = Xh
′ b . (6.14)

It is inappropriate to select combinations of X’s that are very different from those used to build the
regression model.

As in simple linear regression, we can build several different types of intervals around Ŷh depending
on exactly what we want to predict. In each case we have (n− p) degrees of freedom and the (1− α)
prediction interval takes on the form

Ŷh ± (t1−α
2 ,n−p)s{pred}, (6.15)

where n is the number of observations to build the regression equation, and s{pred} depends on exactly
what you want to predict.

◦ To predict the mean response at Xh you use

s{pred} =
√

MSE (Xh
′(X′X)−1 Xh). (6.16)
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◦ To predict a single new observation you use

s{pred} =
√

MSE (1 + Xh
′(X′X)−1 Xh). (6.17)

◦ To predict the mean of m new observations you use

s{pred} =

√
MSE

(
1
m

+ Xh
′(X′X)−1 Xh

)
. (6.18)

6.6 Diagnostics and remedial measures

• Locating outliers takes more effort in multiple regression. An observation could be an outlier because it
has an unusually high or low value on a predictor. But it also could be an outlier if it simply represents
an unusual combination of the predictor values, even if they all are within the normal range.

You should therefore examine plots of the predictors against each other in addition to scatterplots and
normal probability plots to locate outliers.

• To assess the appropriateness of the multiple regression model and the consistancy of variance you
should plot the residuals against the fitted values. You should also plot the residuals against each
predictor variable seperately.

• In addition to other important variables, you should also check to see if you should include any
interactions between your predictors in your model.

6.7 Using SAS

• Running a multiple regression is SAS is very easy. The code looks just like that for simple linear
regression, but you have more than one variable after the equals sign:

proc reg
model Y = X1 X2 X3;

• Predicting new observations in multiple regression also works the same way. You just insert an obser-
vation in your data set (with a missing value for Y ) and then add a print cli or print clm line after
your proc reg statement.
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Chapter 7

Multiple Regression II

7.1 General information about extra sums of squares

• Extra sums of squares measure the marginal reduction in the error sum of squares when one or more
independent variables are added to a regression model.

• Extra sums of squares are also referred to as partial sums of squares.

• You can also view the extra sums of squares as the marginal increase in regression sum of squares when
one or more independent variables are added to a regression model.

• In general, we use extra sums of squares to determine whether specific variables are making substantial
contributions to our model.

7.2 Extra sums of squares notation

• The regression sum of squares due to a single factor X1 is denoted by SSR(X1). The corresponding
error sum of squares is denoted by SSE(X1). This is the SSR from the regression model

Yi = β0 + β1Xi + εi, (7.1)

where i = 1 . . . n.

• The sums of squares due to multiple factors is represented in a similar way. For example, the regression
sum of squares due to factors X1, X2, and X3 is denoted by SSR(X1, X2, X3) and the error sum of
squares by SSE(X1, X2, X3). This is the SSR from the regression model

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi, (7.2)

where i = 1 . . . n.

• When we have more than one predictor variable we can talk about the extra sum of sqares associated
with a factor or group of factors. In model 7.2 above, the extra sum of squares uniquely associated
with X1 is calculated as

SSR(X1|X2, X3) = SSE(X2, X3)− SSE(X1, X2, X3)
= SSR(X1, X2, X3)− SSR(X2, X3).

(7.3)

As mentioned above, SSR(X1|X2, X3) is a measure of how much factor X1 contributes to the model
above and beyond the contribution of factors X2 and X3.

• The unique sums of squares associated with each factor are often referred to as Type II sums of squares.
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7.3 Decomposing SSR into extra sums of squares

• Just as we can partition SSTO into SSR and SSE, we can partition SSR into the extra sums of squares
associated with each of our variables. For example, the SSR from model 7.2 above can be broken down
as follows:

SSR(X1, X2, X3) = SSR(X1) + SSR(X2|X1) + SSR(X3|X1, X2). (7.4)

These components are often referred to as the Type I sums of squares.

• We can represent the relationships between our sums of squares in an ANOVA table. For example, the
table corresponding to model 7.2 would be:

Source of variation SS df MS

Model (R) SSR(X1, X2, X3) (p− 1) = 3 MSR(X1, X2, X3)

X1 SSR(X1) 1 MSR(X1)

X2|X1 SSR(X2|X1) 1 MSR(X2|X1)

X3|X1, X2 SSR(X3|X1, X2) 1 MSR(X3|X1, X2)

Error SSE(X1, X2, X3) n− 4 MSE(X1, X2, X3)

Total SSTO n− 1

• Note that putting our parameters in a different order would give us different Type I SS.

7.4 Comparing Type I and Type II sums of squares

• To review, to calculate the Type I SS you consider the variability accounted for by each predictor,
conditioned on the the predictors that occur earlier in the model:

X1 : SSR(X1)
X2 : SSR(X2|X1)
X3 : SSR(X3|X1, X2).

(7.5)

To calculate the Type II SS you consider the unique variablility accounted for by each predictor:

X1 : SSR(X1|X2, X3)
X2 : SSR(X2|X1, X3)
X3 : SSR(X3|X1, X2).

(7.6)

• The Type I SS are guaranteed to sum up to SSR(X1, X2, X3), while the Type II SS are not guaranteed
to sum up to anything. We say that the Type I SS partition the SSR.

• The Type II SS are guaranteed to be the same no matter how you enter your variables in your model,
while the Type I SS may change if you use different orders.

• Testing the significance of parameters is the same as testing the Type II SS.

7.5 Testing parameters using extra sums of squares

• To test whether a single βk = 0 we can perform a general linear model test using the extra sums of
squares associated with that parameter.
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• For example, if we wanted to test parameter β2 from model 7.2 our hypotheses would be

H0 : β2 = 0
Ha : β2 6= 0.

(7.7)

The full model is
Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi. (7.8)

Our reduced model is the same except without the variable we want to test:

Yi = β0 + β1Xi1 + β3Xi3 + εi. (7.9)

We then calculate the following test statistic:

F ∗ =

SSEreduced−SSEfull

dfreduced−dffull

SSEfull

dffull

=
SSE(X1,X3)−SSE(X1,X2,X3)

1

SSE(X1,X2,X3)
n−4

, (7.10)

which follows an F distribution with 1 numerator and n− 4 denominator degrees of freedom. Testing
parameters in this way is referred to as performing partial F-tests.

• We can also test the contribution of several of your variables simultaneously. For example, if we wanted
to simultaneously test the contribution of X1 and X3 in model 7.2 above our hypotheses would be

H0 : β1 = β3 = 0
Ha : at least one 6= 0.

(7.11)

The full model is
Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi (7.12)

and the reduced model is
Yi = β0 + β2Xi2 + εi. (7.13)

We then calculate the following test statistic:

F ∗ =
SSE(X2)−SSE(X1,X2,X3)

2

SSE(X1,X2,X3)
n−4

, (7.14)

which follows an F distribution with 2 numerator and n− 4 denominator degrees of freedom.

• We can perform other tests as well. For example, if we wanted to test whether β1 = β2 our hypotheses
would be

H0 : β1 = β2

Ha : β1 6= β2.
(7.15)

The full model would be
Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi (7.16)

and the reduced model would be

Yi = β0 + βc(Xi1 + Xi2) + β3Xi3 + εi. (7.17)

To build the reduced model we could create a new variable

Xic = Xi1 + Xi2 (7.18)

and then build a model predicting Y from Xc and X3. Once we obtain the SSR from these models we
perform a general linear test to make inferences.
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7.6 Coefficients of partial determination

• Just as the coefficient of multiple determination R2 measures the proportionate reduction in the vari-
ation of Y associated with your full model, coefficients of partial determination r2 measure the pro-
portionate reduction of error associated with specific parameters.

• The coefficient of partial determination is defined as the marginal reduction in error obtained by
including a parameter in your model. For example, the coefficient of partial determination for variable
X1 in model 7.2 above is

r2
Y 1.23 =

SSR(X1|X2, X3)
SSE(X2, X3)

. (7.19)

• You can take the square root of the coefficient of partial determination to get the coefficient of partial
correlation. It is given the same sign as that of the corresponding regression coefficient.

7.7 Standardized multiple regression

• In multiple regression we sometimes work with standardized variables to control for roundoff errors
and to permit comparisons between the regression coefficients.

• The first step to building a standardized model is to perform a correlation transformation on our
variables as follows:

Y ′
i = 1√

n−1

(
Yi−Ȳ
s{Y }

)

X ′
ik = 1√

n−1

(
Xik−X̄k

s{Xk}
) (7.20)

where k = 1 . . . p− 1, and the standard deviations are defined as

s{Y } =

√∑
(Yi−Ȳ )2

n−1

s{Xk} =

√∑
(Xik−X̄k)2

n−1 .

(7.21)

• We use these variables to generate a standardized multiple regression model:

Y ′
i = β′1X

′
i1 + β′2X

′
i2 + · · ·+ β′p−1X

′
i,p−1 + ε′i, (7.22)

where i = 1 . . . n. Notice that we do not have an intercept parameter – our transformation always leads
to an intercept of zero.

• The parameters from the standardized model are related to the original parameters as follows:

βk =
(

s{Y }
s{Xk}

)
β′k

β0 = Ȳ − β1X̄1 − β2X̄2 − · · · − βp−1X̄p−1,

(7.23)

where k = 1 . . . p− 1.

• An interesting result is that the X′X matrix of the transformed variables is the correlation matrix of
the X variables rXX. Similarly, the X′Y matrix is the correlation matrix of the X’s with Y rYX.
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7.8 Multicollinearity

• You have multicollinearity when your predictor variables are correlated. This is bad because it reduces
the precision of your parameter estimates. It is difficult to draw conclusions about a model with
significant multicollinearity.

• While it affects the estimation of your individual parameters, multicollinearity does not affect inferences
regarding the full model.

• If X1 and X2 are uncorrelated then SSR(X1|X2) = SSR(X1) and SSR(X2|X1) = SSR(X2). This also
extends to more than two variables. This means that if you have no multicollinearity among your
variables then your Type I SS are exactly equal to your Type II SS and are not dependent on the order
of the variables in your model.

• The primary solution to multicollinearity is to drop variables from your model that are highly correlated
with others. Using centered variables can help reduce some types of multicollinearity. Otherwise, there
is not much else you can do.

7.9 Polynomial models

• Polynomial regression is actually just a type of general linear model where you take your terms to
higher powers, such as squares and cubes.

• You need to center your predictors (subtract off the mean) before performing a polynomial regression.
Using standardized variables works just as well.

• A simple type is the second order model with one predictor:

Yi = β0 + β1Xi + β11X
2
i + εi, (7.24)

where i = . . . n.

• Note that you always include the lower-order factors in your model. It is inappropriate to have a model
with Xk as a factor unless you also include factors X1 . . . Xk−1.

• You can also have polynomial models with more than one independent variable, such as

Yi = β0 + β1Xi1 + β11X
2
i1 + β2Xi2 + β22X

2
i2 + εi, (7.25)

where i = 1 . . . n.

• A lower order predictor should always be entered in your model before a higher order predictor from
the same independent variable.

• You can tell how high of an order function you should use by the shape of the data. If your data
appears to reverse p times, you should use a function whose highest order parameter is at the p − 1
power.

7.10 Interaction models

• If the effect of one predictor variable appears to depend on the level of another variable in your model
you should include an interaction term. You can also have interactions with more than two variables.

• You construct an interaction term by multiplying the variables involved in the interaction together.

• A model of the interaction between two variables would be

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2 + εi, (7.26)

where i = 1 . . . n.
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• In this model the mean change in Y with a unit increase in X1 when X2 is held constant is β1 +β3X2.
Similarly, the mean change in Y with a unit increase in X2 when X1 is held constant is β2 + β3X1.

• It is inappropriate to include an interaction term in a model without also including all of the variables
involved in the interaction individually.

• It is possible to have interactions with higher-order terms, such as squares and cubes. However, these
types of interactions are difficult to interpret.

7.11 Using SAS

• From here on out we will occasionally use the SAS proc glm to perform our analyses instead of proc
reg. The basic syntax for proc glm is exactly the same as proc reg, but it has some additional
capabilities.

• To get SAS to output the Type I or Type II SS you can just add the ss1 or ss2 toggle to your model
statement in either proc reg or proc glm:

proc reg data=one;
model Y=X1 X2 X3 / ss1 ss2;

• SAS does not have a procedure to perform a correlation transformation. However, you can use proc
standard to standardize your variables and then divide each by

√
n− 1. The following code would

perform a correlation transformation on a dependent and three independent variables:

data one;
/* You would have code here to read in the variables Y, X1, X2, and X3 */
proc standard data=one mean=0 std=1 out=two;

var Y X1 X2 X3;

data three;
set two;
/* You would have to specify the exact value of n-1 in these statements */
YC = Y / sqrt(n-1);
X1C = X1 / sqrt(n-1);
X2C = X2 / sqrt(n-1);
X3C = X3 / sqrt(n-1);

proc reg data=two;
model YC = X1C X2C X3C;

You can have SAS test the significance of sets of parameters using the partial statement under proc
reg. The following code would test whether both β1 and β3 are equal to zero:

proc reg data=one;
model Y = X1 X2 X3;
partial: test X1=0, X3=0;
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Chapter 8

Building the Regression Model I:
Selection of Predictor Variables

8.1 General information about model building

• A good model is one that accurately reflects the data uses a relatively small number of meaning-
ful independent variables to predict a relatively large proportion of the variability in the dependent
variable.

• There are four basic steps to building a good regression model:

1. Collect the data appropriately.

2. Decide on the essential predictor variables, including interactions and polynomial terms.

3. Refine your model. Make sure that you account for all the appropriate factors without having
extra variables in your model.

4. Test your model. Your model was built for your specific data set so you shouldn’t put too much
faith in it until you’ve validated it with new data.

8.2 “All possible models” methods

• In this method you systematically test every possible combination of variables. You should be careful
not to consider invalid models (like interaction models without main effects).

• For each model you calculate some measure of “fitness” and choose the one that fits best. The common
measures are:

R2 criterion You calculate R2 = SSR
SST0 for each model. Models with more parameters will have larger

R2’s, so you need to take this into account. Generally you will see a point after which adding
more variables makes little difference in the R2.

Adjusted R2 criterion You calculate R2
a = 1− MSE (n−1)

SSTO for each model. This puts models with
different numbers of parameters on an equal footing, so you can just look for higher R2

a’s.

Mallows Cp criterion You calculate Cp = SSE
MSE − (n − 2p) for each model. You look for a model

whose Cp is close to the number of parameters used in the model.

PRESSp criterion You calculate PRESSp =
∑

(Yi−Ŷi(i))2 for each model, where Ŷi(i) is the predicted
value of Yi when the ith observation is not used to build the regression model. Models with small
PRESSp values are better than those with large values.
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8.3 Forward stepwise regression

• In forward stepwise regression we start with a simple model and gradually add parameters to it until
we are unable to make any significant improvement. If at any time during the process a previously
included variable is no longer predictive it is removed from the model.

• Stepwise regression is generally used when there are too many variables to use the “all possible models”
procedure.

• The steps for performing forward stepwise regression are:

1. Fit the simple linear regression models for each of the p − 1 predictor variables. Select the one
that accounts for the most variance as a candidate for the model.

2. Test all the two-factor regression models that include the candidate chosen in step 1. Examine
the two-factor model that accounts for the most variance. If the second factor makes a significant
contribution we add it to our model. If not, we stop with the model we currently have.

3. Check to see if you need to drop any of your included variables. Compute partial F-tests for each:

Fa
∗ =

MSR(Xa|Xb)
MSE(Xa, Xb)

=
(

ba

s{bA}
)2

. (8.1)

Remove the variable if this statistic is not significant.

4. Check for more candidates. If you add new variables you must check to see if you need to drop
older variables. Cycle between steps 2 and 3 until you have no more candidates.

8.4 Using SAS

• Model building procedures are available under proc reg. The general format is:

proc reg data=one;
model Y = X1 X2 X3 X4 /selection= *keyword* best=*number*;

*keyword* defines the model selection procedure that you want to perform and is either forward,
backward, stepwise, rsquare, adjrsq, or cp. To perform forward stepwise regression you use the
stepwise keyword. *number* specifies the maximum number of subset models you want SAS to
print.

When using forward selection you can control the p-values at which variables enter and leave the model
using the slentry and slstay keywords:

proc reg data=one;
model Y = X1 X2 X3 X4 /selection=forward slentry=.05 slstay=.05;

• SAS will not perform model selection using the PRESSp statistic, but you can store the PRESS values
for a single model in an output data set using the following code:

proc reg data=one;
model Y = X1 X2 X3 X4;
output out=two press=press;

proc print data=two;

The PRESSp for the model would be the sum of these values.

• SAS will not perform “all possible models” procedures when you have more than ten predictors.
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Chapter 9

Building the Regression Model II:
Diagnostics

9.1 Checking the model’s predictors

• To make sure you are not leaving out any important predictor variables you should perform partial
regression plots on any variables you’ve excluded.

• Consider the case where Y is your dependent variable, X1 and X2 are included in your model, and X3

was excluded from your model. To create a partial regression plot for X3 you:

1. Regress Y on the terms in your model, X1 and X2.
2. Calculate the residuals = ei(Y |X1, X2).
3. Regress X3 on the terms in your model, X1 and X2.
4. Calculate the residuals = ei(X3|X1, X2).
5. Plot ei(Y |X1, X2) versus ei(X3|X1, X2). If you see any pattern it indicates that you would benefit

by adding some function of X3 to your model. The nature of the pattern tells you whether the
term should be linear, quadratic, etc.

• You should also check the partial regression plots of variables included in your model to see if you
should add higher polynomial terms.

9.2 Improved methods for calculating residuals

• We often perform transformations on our residuals make it easier to identify outliers.

• Studentized residuals represent the magnitude of each residual relative to the estimated standard de-
viation. The studentized residual is calculated as

ri =
ei

s{ei} , (9.1)

where
s{ei} =

√
MSE (1− hii). (9.2)

The studentized residuals follow a t distribution with n− p degrees of freedom.

• Deleted residuals measure how accurate your model is in predicting each observation when the obser-
vation under consideration is not used to build the regression model. The deleted residual is calculated
as

di = Yi − Ŷi(i), (9.3)

where Ŷi(i) is the predicted value for observation i from the regression model built without using i.
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• Studentized deleted residuals combine both the above methods, giving you the residual relative to its
standard deviation when the observation from which the residual is calculated is not used to build the
regression model. The studentized deleted residual is calculated as

ti =
di

s{di} =
ei√

MSE(i) (1− hi(i))
, (9.4)

where MSE(i) refers to the mean square error from the model built without observation i. The stu-
dentized deleted residuals follow a t distribution with n− p− 1 degrees of freedom.

9.3 Checking for outliers using leverage

• Recall that
H = X(X′X)−1X′ (9.5)

and
Ŷ = HY . (9.6)

• We can examine the H matrix to look for outliers. For a single residual ei,

σ2{ei} = σ2(1− hii), (9.7)

where hii is the ith diagonal element of the H matrix.

• The value hii is a measure of the distance between the predictor values of the ith observation and the
mean predictor values and is called that observation’s leverage.

• Two properties of the leverage values are that

0 ≤ hii ≤ 1 (9.8)

and ∑
hii = p. (9.9)

• If an observation has a large leverage then we know that it is very different from the average. If

hii > (
2p

n
= 2h̄) (9.10)

then observation i can be considered an outlier.

9.4 Identifying influential cases

• After we identify an outlying observation we need to determine if it is influential. That is, if it had
undue influence on our parameter estimates.

• To detect influential cases you can examine:

DFFITS - measures the influence that observation i has on the fitted value Ŷi. An observation is
influential if

|DFFITS| > 1 when n ≤ 30
|DFFITS| > 2

√
p
n when n > 30.

(9.11)

Cook’s D - measures the influence that observation i has on all of the fitted values. Cook’s D follows
an F distribution with p numerator and n − p denominator degrees of freedom. A significant D
indicates that the observation is influential.

DFBETAS - measures the influence that observation i has on each regression coefficient. There is a
DFBETA for each coefficient. An observation is influential if

|DFBETAk| > 1 whenn ≤ 30
|DFBETAk| > 2√

n
whenn > 30,

(9.12)

where k = 1 . . . p− 1.
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9.5 Dealing with outliers

• When you locate outliers you should first check to make sure that the data was entered correctly.

• After establishing that you have true outliers you should determine if they are influential or not.

• If your outliers are not influential then you don’t need to worry about correcting for them. If they are
influential you have to decide whether you want to delete them from your data. You might also want
to consider if adding another predictor might be appropriate.

• If you don’t want to delete the outliers (because either there are too many of them or your data set
is too small) you can try transforming one or more of your variables. You can also try using least
absolute deviations estimators instead of least squares estimators.

9.6 Multicollinearity

• There are a number of “symptoms” of multicollinearity that you may notice when working with re-
gression:

◦ Your regression coefficients change significantly when you add or remove predictors.

◦ Established predictors of an effect turn up nonsignificant.

◦ The regression coefficient has a sign opposite to the known correlation between the predictor and
the response variable.

◦ Your model is highly significant but none of your parameter estimates are significant.

• To formally diagnose multicollinearity we use Variance Inflation Factors (VIFs). These estimate how
much of the variance in the estimated regression coefficients is caused by multicollinearity.

• For each coefficient βk you calculate

VIFk = (1−Rk
2)−1, (9.13)

where Rk
2 is the coefficient of multiple determination when Xk is regressed on the other p−2 predictors.

If the largest VIF ≥ 10 then multicollinearity is a problem in your model.

• We talked about the effects of multicollinearity in chapter 7.

9.7 Using SAS

• To have SAS output the studentized residuals to a data set you use the student keyword in the output
line. Similarly, to have SAS output the studentized deleted residuals you use the rstudent keyword.
The following code would produce a data set called two which would have the studentized residuals
under the variable stud and the studentized deleted residuals under the variable studdel.

proc reg data=one;
model Y=X1 X2 X3;
output out=two student=stud rstudent=studdel;

• You can have SAS output the leverage values (hii) to a data set using the h keyword on the output
line. The following code would create a data set called two with the leverage values in a variable called
lev.

proc reg data=one;
model Y=X1 X2 X3;
output out=two h=lev;
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• To get the DFFITS and DFBETAS for your observations you add the influence switch to your model
statement. To get Cook’s D, however, you need to use the cookd keyword of the output statement
and print it out separately. The following code would produce all three influence measures:

proc reg data=one;
model Y=X1 X2 X3 / influence;
output out=two cookd=D;

proc print data=two;

• To get SAS to calculate VIF’s for your variables you need only add the vif switch to your model
statement:

proc reg data=one;
model Y=X1 X2 X3 / vif;
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Chapter 11

Qualitative Predictor Variables

11.1 General information about qualitative variables

• So far we have only dealt with quantitative predictor variables, where the variable is some sort of
numerical measurement. In this chapter we learn how to use qualitative variables, where refer to how
items are categorized.

• When we have multiple groups it is better to model them with a qualitative variable than to build
several different regression lines. Using a qualitative variable provides a more accurate estimate of the
MSE, plus you get more precise parameter estimates because you’re using your entire sample.

• When you build a model you can have:

◦ All quantitative variables. This is simple or multiple regression.

◦ All qualitative variables. This is analysis of variance (ANOVA).

◦ A mixture of quantitative and qualitative variables. This is analysis of covariance (ANCOVA).

11.2 Indicator variables

• We represent a qualitative predictor in our regression model with one or more indicator variables.

• Consider a qualitative variable with three levels, A, B, and C. We would create two indicator variables,
X1 and X2, to represent this categorization. We define these for each observation in the following way:

X1 =
{

1 if in category A
0 if not in category A X2 =

{
1 if in category B
0 if not in category B (11.1)

• We don’t need an indicator variable for the third category because we know that if it’s not in the first
two it has to be in the third. If you include a third indicator variable your X matrix will not be full
rank.

• In general, you use a number of indicator variables to represent a factor equal to one less than the
number of different factor levels.

• The significance of a qualitative predictor is usually examined using the General Linear Test.

11.3 Using SAS

• To analyze qualitative variables using proc reg you must manually build your indicator variables in
the data step of your program.
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To define interaction terms with indicator variables you create a new set of indicators by multiplying
together the variables used to represent the factors you want to interact. For example, say you wanted
to interact the qualitative variable A with three levels (coded by indicator variables A1 and A2) with
qualitative varible B with three levels (coded by indicator variables B1 and B2). The interaction
between A and B would be coded by four indicator variables: A1B1, A1B2, A2B1, and A2B2.

• To analyze qualitative variables using proc glm you can either build your indicator variables in the
data step or you can use the class statement.

For example, if you wanted to predict college gpa (Y) by the high school that a student attended
(coded by different values of X) you could use the following code:

proc glm data=one;
class X;
model Y=X;

You can define interaction terms with qualitative variables declared in the class statement the same
way you define interactions between quantitative variables:

proc glm data=one;
class X1 X2;
model Y=X1 X2 X1*X2;
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Chapter 16

Single Factor ANOVA

16.1 General information about ANOVAs

• ANOVA differs from regression in two ways:

1. The predictors may be qualitative.

2. No assumptions are made about the nature of the relationship between the dependent variable
and any qualitative variables.

• In ANOVA we refer to predictor variables as “factors.” The different categories a composing a factor
are called the “levels” of that factor.

• We can have either experimental factors, where the levels are assigned, or classification factors, where
the levels are observed.

• We have the following assumptions when performing fixed-factor ANOVAs:

1. For each factor level there is a probability distribution of responses that is normally distributed.

2. Each probability distribution within a factor has the same variance.

3. The observations at each factor level are randomly drawn from the probability distribution asso-
ciated with that factor and are independent of each other.

16.2 Cell means model

• The cell means model is a way of representing a single-factor ANOVA. Its general form is

Yij = µi + εij , (16.1)

where i = 1 . . . r, j = 1 . . . ni, r is the number of levels in the factor, and ni is the number of observations
in factor level i.

• This model assumes that the response variable has a different mean at each level of our factor.

• We often consider the following calculations with regard to the cell means model:

◦ nt =
∑

ni

◦ Yi. =
∑

j Yij

◦ Ŷij = Yi.

ni
= Ȳi.

◦ Ȳ.. =
∑∑

Yij

nt

◦ eij = Yij − Ŷij = Yij − Ȳi
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16.3 Partitioning variance in ANOVA

• The deviation in Y may be broken down as follows:

(Yij − Ȳ..) = (Ȳi. − Ȳ..) + (Yij − Ȳi.)
Total deviation Deviation caused by the treatment Individual variation (16.2)

• This corresponds to the following ANOVA table:

Source of variation SS df

SSTR
∑

ni(Ȳi. − Ȳ..)2 r − 1

SSE
∑∑

(Yij − Ȳi.)2 nt − r

SSTO
∑ ∑

(Yij − Ȳ..)2 nt − 1

• In ANOVA we assume that the variances within each factor level are the same. We refer to this as the
expected mean square error:

E(MSE) = σ2. (16.3)

Consider the variance we would get if we considered the entire sample. Not only would we have
variability due to error, we would also have the variability associated with the different levels of our
factor. This would be the expected treatment mean square:

E(MSTR) = σ2 +
∑

ni(µi − µ.)
r − 1

. (16.4)

• If the MSE and the MSTR are the same then we can infer that the means at each level of the factor
are the same. We can use this to test whether our factor is creating meaningful divisions. To test

H0 : µ1 = µ2 = . . . = µr

Ha : not all means equal (16.5)

we can calculate the following statistic:

F ∗ =
MSTR
MSE

, (16.6)

which follows an F distribution with r − 1 numerator and nt − r denominator degrees of freedom.

16.4 Regression approach to ANOVA

• Consider the cell means model above:
Yij = µi + εij . (16.7)

Just as we did in partitioning variance, we can write this equation in terms of treatment deviations
from the grand mean:

Yij = µ. + (µi − µ.) + εij . (16.8)

Let τi = µi−µ. = treatment i’s deviation from grand mean. We can then rewrite the cell means model
as

Yij = µ. + τi + εij . (16.9)

• Note that the treatment deviations are dependent because
∑

τi = 0. This means that we can write
the last treatment deviation as

τr = −τ1 − τ2 − . . .− τr−1. (16.10)
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• Using these we can build the factor effects model:

Yi = µ. + τ1Xi1 + τ2Xi2 + . . . + τr−1Xi,r−1 + εi, (16.11)

where

Xij =





1 if observation i is a member of group j
−1 if observation i is a member of group r
0 otherwise

(16.12)

and i = 1 . . . nt. Setting up your X’s in this way is called effect coding.

16.5 Using SAS

• If you use proc glm to regress a response variable on a categorical factor, you can use the means
statement to have SAS report the mean of the response variable and each level of the factor:

proc glm data=one;
class X;
model Y=X;
means X;

• We have already learned how to perform regression with qualitative variables using proc reg and proc
glm. We can also use proc anova, which works in basically the same way as proc glm. It has some
additional options for examining differences between factor level means.
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Chapter 17

Analysis of Factor Level Effects

17.1 General information about factor level effects

• Using basic ANOVA techniques we can determine if at least one level of a categorical variable is different
from the others. However, they cannot tell us which levels differ.

• This chapter presents two basic methods to examine factor level effects. One method allows us to test
hypotheses related to specifc patterns among the factor level means. The other compares the means
of all the different factor levels to determine which are significantly different.

17.2 Graphical methods

• To determine which factor levels are different we can examine a line plot. In a line plot we draw a
horizontal line representing different levels of our response variable. We then draw dots to represent
the means at each level of our categorical variable. We then look for a pattern of differences.

• To simply determine whether there are differences between any of our factor levels we can examine
a normal probability plot. A significant departure from normality indicates that our factor levels are
different.

17.3 Estimation of factor level effects

• The factor level mean µi is estimated by Ȳi.. To test

H0 : µi = c
Ha : µi 6= c.

(17.1)

you calculate the statistic

t∗ =
Ȳi. − c

s{Yi.} , (17.2)

which follows a t distribution with nt−r degrees of freedom. The standard deviation of Yi. is calculated
as

s{Yi.} =

√
σ2

ni
≈

√
MSE
ni

. (17.3)

• You can estimate the difference between two factor level means D = µi − µi′ by calculating

D̂ = Ȳi. − Ȳi′.. (17.4)
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To test
H0 : D = c
Ha : D 6= c

(17.5)

you calculate the statistic

t∗ =
D̂ − c

s{D} , (17.6)

which follows a t distribution with nt−r degrees of freedom. The standard deviation of D is calculated
as

s{D} =

√
σ2

(
1
ni

+
1

ni′

)
≈

√
MSE

(
1
ni

+
1

ni′

)
. (17.7)

• You can also calculate linear contrasts. A contrast is a linear combination of the factor level means
L =

∑
ciµi, where the coefficients ci always sum to zero. You estimate the contrast by

L̂ =
∑

ciȲi.. (17.8)

To test
H0 : L = Lc

Ha : L 6= Lc
(17.9)

you calculate the statistic

t∗ =
L̂− Lc

s{L} , (17.10)

which follows a t distribution with nt−r degrees of freedom. The standard deviation of L is calculated
as

s{L} =

√
σ2

∑ ci
2

ni
≈

√
MSE

∑ ci
2

ni
. (17.11)

17.4 Multiple pairwise comparisons

• Often we want to test the means of all of our levels to see which are significantly different from each
other. To do this we must imploy special multiple comparisons procedures.

• Tukey’s method, based on confidence limits, is one of the most popular. To perform a Tukey test you:

1. Calculate all possible comparisons D between the factor level means. For each pair of i and i′

(where i 6= i′) you calculate the test statistic

q∗ =
√

2t∗ =
√

2

[
D̂

s{D}

]
=
√

2




Ȳi − Ȳi′√
MSE

(
1
ni

+ 1
ni′

)


 , (17.12)

which follows a q distribution (also called the studentized range distribution) with r numberator
and nt − r denominator degress of freedom. The p-values for this distribution are found in table
B9 of your textbook.

2. Order the factor level means on a line.

3. Underline the pairs of means that are not significant.

• The textbook also shows how to perform Scheffe’s and Bonferroni’s multiple comparisons tests.
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17.5 Using SAS

• You can have SAS perform linear contrasts in proc glm using the contrast statement. You specify
a label for the contrast, the categorical variable you’re basing the contrast on, and the coefficients for
the contrasts. For example, the following code would test whether the average of the first two groups
is the same as the average of the last two groups:

proc glm data=one;
class X;
model Y=X;
contrast ’First two vs last two’ X .5 .5 -.5 -.5;

• You can have SAS calculate Tukey’s, Bonferroni’s, or Scheffe’s multiple comparisons groupings by using
options on the means statement in either proc glm or proc anova. The following code would have
SAS output all three:

proc anova data=one;
class X;
model Y=X;
means X /tukey bon scheffe;
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